Dynamic relation learning for link prediction in knowledge hypergraphs

被引:1
|
作者
Zhou, Xue [1 ]
Hui, Bei [1 ]
Zeira, Ilana [2 ]
Wu, Hao [1 ,3 ]
Tian, Ling [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, 4,Sect 2,North Jianshe Rd, Chengdu 610054, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, 2006 Xiyuan Ave,West Hitech Zone, Chengdu 611731, Sichuan, Peoples R China
[3] CETC Rongwei Elect Technol Co Ltd, Jinke North Rd, Chengdu 610074, Sichuan, Peoples R China
关键词
Link prediction; Knowledge hypergraph; Message passing neural network; Dynamic relation learning;
D O I
10.1007/s10489-023-04710-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Link prediction for knowledge graphs (KGs), which aims to predict missing facts, has been broadly studied in binary relational KGs. However, real world data contains a large number of high-order interaction patterns, which is difficult to describe using only binary relations. In this work, we propose a relation-based dynamic learning model RD-MPNN, based on the message passing neural network model, to learn higher-order interactions and address the link prediction problem in knowledge hypergraphs. Different from existing methods, we consider the positional information of entities within a hyper-relation to differentiate each entity's role in the hyper-relation. Furthermore, we complete the representation learning of hyper-relations by dynamically updating hyper-relations with entity information. Extensive evaluations on two representative knowledge hypergraph datasets demonstrate that our model outperforms the state-of-the-art methods. We also compare the performance of models at differing arities (the number of entities within a relation), to show that RD-MPNN demonstrates outstanding performance metrics for complex hypergraphs (arity>2).
引用
收藏
页码:26580 / 26591
页数:12
相关论文
共 50 条
  • [1] Dynamic relation learning for link prediction in knowledge hypergraphs
    Xue Zhou
    Bei Hui
    Ilana Zeira
    Hao Wu
    Ling Tian
    Applied Intelligence, 2023, 53 : 26580 - 26591
  • [2] Explainable Link Prediction in Knowledge Hypergraphs
    Chen, Zirui
    Wang, Xin
    Wang, Chenxu
    Li, Jianxin
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 262 - 271
  • [3] Neighboring relation enhanced inductive knowledge graph link prediction via meta-learning
    Ben Liu
    Miao Peng
    Wenjie Xu
    Min Peng
    World Wide Web, 2023, 26 : 2909 - 2930
  • [4] Neighboring relation enhanced inductive knowledge graph link prediction via meta-learning
    Liu, Ben
    Peng, Miao
    Xu, Wenjie
    Peng, Min
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 2909 - 2930
  • [5] Link Prediction with Hypergraphs via Network Embedding
    Zhao, Zijuan
    Yang, Kai
    Guo, Jinli
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [6] TRFR: A ternary relation link prediction framework on Knowledge graphs
    Zhang, Yao
    Xu, Hengpeng
    Zhang, Xu
    Wu, Xingxing
    Yang, Zhenglu
    AD HOC NETWORKS, 2021, 113
  • [7] Numerical Knowledge Representation Learning and Link Prediction over Knowledge Graph
    Huang, Zhen
    Qiu, Xue
    Liu, Yu
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 371 - 378
  • [8] Link Prediction in Dynamic Networks Based on Machine Learning
    Liu, Jiachen
    Jiang, Yinan
    Wang, Yashen
    Xie, Haiyong
    Ni, Jie
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 836 - 841
  • [9] A Supervised Learning Approach to Link Prediction in Dynamic Networks
    Xu, Shuai
    Han, Kai
    Xu, Naiting
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2018), 2018, 10874 : 799 - 805
  • [10] RLPath: a knowledge graph link prediction method using reinforcement learning based attentive relation path searching and representation learning
    Ling Chen
    Jun Cui
    Xing Tang
    Yuntao Qian
    Yansheng Li
    Yongjun Zhang
    Applied Intelligence, 2022, 52 : 4715 - 4726