Exploring the Potential Mechanism of Action of Ursolic Acid against Gastric Cancer and COVID-19 using Network Pharmacology and Bioinformatics Analysis

被引:5
|
作者
Liu, Zhiyao [1 ]
Huang, Hailiang [1 ]
Yu, Ying [2 ]
Jia, Yuqi [1 ]
Li, Lingling [1 ]
Shi, Xin [1 ]
Wang, Fangqi [1 ]
机构
[1] Shandong Univ Tradit Chinese Med, Dept Rehabil Med, Jinan, Peoples R China
[2] Shandong Univ Tradit Chinese Med, Innovat Inst Chinese Med & Pharm, Jinan, Peoples R China
关键词
COVID-19; gastric cancer; network pharmacology; ursolic acid; bioinformatics analysis; WGCNA; INFLAMMATORY RESPONSE; LUNG INJURY; CELLS; PROLIFERATION; INHIBITION; INFECTION; TOXICITY; PROMOTES; PATHWAY; GENES;
D O I
10.2174/1381612829666230510124716
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background Patients with gastric cancer (GC) are more likely to be infected with 2019 coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the prognosis is worse. It is urgent to find effective treatment methods. Objective This study aimed to explore the potential targets and mechanism of ursolic acid (UA) on GC and COVID-19 by network pharmacology and bioinformatics analysis. Methods The online public database and weighted co-expression gene network analysis (WGCNA) were used to screen the clinical related targets of GC. COVID-19-related targets were retrieved from online public databases. Then, a clinicopathological analysis was performed on GC and COVID-19 intersection genes. Following that, the related targets of UA and the intersection targets of UA and GC/COVID-19 were screened. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome Analysis (KEGG) pathway enrichment analyses were performed on the intersection targets. Core targets were screened using a constructed protein-protein interaction network. Finally, molecular docking and molecular dynamics simulation (MDS) of UA and core targets were performed to verify the accuracy of the prediction results. Results A total of 347 GC/COVID-19-related genes were obtained. The clinical features of GC/COVID-19 patients were revealed using clinicopathological analysis. Three potential biomarkers (TRIM25, CD59, MAPK14) associated with the clinical prognosis of GC/COVID-19 were identified. A total of 32 intersection targets of UA and GC/COVID-19 were obtained. The intersection targets were primarily enriched in FoxO, PI3K/Akt, and ErbB signaling pathways. HSP90AA1, CTNNB1, MTOR, SIRT1, MAPK1, MAPK14, PARP1, MAP2K1, HSPA8, EZH2, PTPN11, and CDK2 were identified as core targets. Molecular docking revealed that UA strongly binds to its core targets. The MDS results revealed that UA stabilizes the protein-ligand complexes of PARP1, MAPK14, and ACE2. Conclusion This study found that in patients with gastric cancer and COVID-19, UA may bind to ACE2, regulate core targets such as PARP1 and MAPK14, and the PI3K/Akt signaling pathway, and participate in anti-inflammatory, anti-oxidation, anti-virus, and immune regulation to exert therapeutic effects.
引用
收藏
页码:1274 / 1292
页数:19
相关论文
共 50 条
  • [1] Exploring the mechanism of ellagic acid against gastric cancer based on bioinformatics analysis and network pharmacology
    Liu, Zhiyao
    Huang, Hailiang
    Yu, Ying
    Li, Lingling
    Shi, Xin
    Wang, Fangqi
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2023, 27 (23) : 3878 - 3896
  • [2] Potential Mechanism of Colchicine against COVID-19 and Non-Small Cell Lung Cancer based on Network Pharmacology and Bioinformatics Analysis
    Liu, Zhiyao
    Huang, Hailiang
    Yu, Ying
    Jia, Yuqi
    Li, Lingling
    Shi, Xin
    Wang, Fangqi
    INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2022, 84 : 199 - 216
  • [3] Potential Action Mechanism of Baicalin on COVID-19 Based on Network Pharmacology
    Kun FANG
    Zhengjie XU
    Suxiao JIANG
    Ping ZHANG
    Lijuan DUAN
    Medicinal Plant, 2021, 12 (01) : 87 - 90
  • [4] Network Pharmacology and Bioinformatics Analysis Identifies Potential Therapeutic Targets of Paxlovid Against LUAD/COVID-19
    Zhang, Wentao
    Yang, Zhe
    Zhou, Fengge
    Wei, Yanjun
    Ma, Xiaoqing
    FRONTIERS IN ENDOCRINOLOGY, 2022, 13
  • [5] Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC
    Wu, Wen-yu
    Jiao, Xin
    Song, Wen-xin
    Wu, Peng
    Xiao, Pei-qi
    Huang, Xiu-fang
    Wang, Kai
    Zhan, Shao-feng
    FRONTIERS IN ENDOCRINOLOGY, 2023, 14
  • [6] Exploring the potential mechanisms of Danshen against COVID-19 via network pharmacology analysis and molecular docking
    Zhang, Qiang
    Liang, Zongsuo
    Wang, Xiaoqing
    Zhang, Siyu
    Yang, Zongqi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Based on network pharmacology and bioinformatics to analyze the mechanism of action of Astragalus membranaceus in the treatment of vitiligo and COVID-19
    Yaojun Wang
    Ming Ding
    Jiaoni Chi
    Tao Wang
    Yue Zhang
    Zhimin Li
    Qiang Li
    Scientific Reports, 13
  • [8] Based on network pharmacology and bioinformatics to analyze the mechanism of action of Astragalus membranaceus in the treatment of vitiligo and COVID-19
    Wang, Yaojun
    Ding, Ming
    Chi, Jiaoni
    Wang, Tao
    Zhang, Yue
    Li, Zhimin
    Li, Qiang
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] A Practical Strategy for Exploring the Pharmacological Mechanism of Luteolin Against COVID-19/Asthma Comorbidity: Findings of System Pharmacology and Bioinformatics Analysis
    Xie, Yi-Zi
    Peng, Chen-Wen
    Su, Zu-Qing
    Huang, Hui-Ting
    Liu, Xiao-Hong
    Zhan, Shao-Feng
    Huang, Xiu-Fang
    FRONTIERS IN IMMUNOLOGY, 2022, 12
  • [10] Network pharmacology-based analysis reveals the putative action mechanism of polygonum cuspidatum against COVID-19
    Zhao, Jun
    Pan, Boyu
    Xia, Yafei
    Liu, Liren
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2021, 14 (05): : 1852 - +