Utilizing Variational Autoencoders in the Bayesian Inverse Problem of Photoacoustic Tomography

被引:3
|
作者
Sahlstrom, Teemu [1 ]
Tarvainen, Tanja [1 ,2 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, Kuopio, Finland
[2] UCL, Dept Comp Sci, London, England
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2023年 / 16卷 / 01期
基金
欧洲研究理事会; 芬兰科学院;
关键词
photoacoustic tomography; Bayesian inverse problems; variational Bayesian methods; machine learning; uncertainty quantification; variational autoencoder; IMAGE-RECONSTRUCTION; LEARNING APPROACH; FORMULAS;
D O I
10.1137/22M1489897
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There has been an increasing interest in utilizing machine learning methods in inverse problems and imaging. Most of the work has, however, concentrated on image reconstruction problems, and the number of studies regarding the full solution of the inverse problem is limited. In this work, we study a machine learning--based approach for the Bayesian inverse problem of photoacoustic tomography. We develop an approach for estimating the posterior distribution in photoacoustic tomography using an approach based on the variational autoencoder. The approach is evaluated with numerical simulations and compared to the solution of the inverse problem using a Bayesian approach.
引用
下载
收藏
页码:89 / 110
页数:22
相关论文
共 50 条
  • [1] Solving Bayesian Inverse Problems via Variational Autoencoders
    Goh, Hwan
    Sheriffdeen, Sheroze
    Wittmer, Jonathan
    Bui-Thanh, Tan
    MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 145, 2021, 145 : 386 - 424
  • [2] Inverse problem regularization with hierarchical variational autoencoders
    Prost, Jean
    Houdard, Antoine
    Almansa, Andr Prime Es
    Papadakis, Nicolas
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 22837 - 22848
  • [3] The Optical Inverse Problem in Quantitative Photoacoustic Tomography: A Review
    Wang, Zeqi
    Tao, Wei
    Zhao, Hui
    PHOTONICS, 2023, 10 (05)
  • [4] On an inverse photoacoustic tomography problem of small absorbers with inhomogeneous sound speed
    Al Jebawy, Hanin
    El Badia, Abdellatif
    IMA JOURNAL OF APPLIED MATHEMATICS, 2022, 87 (04) : 607 - 646
  • [5] Highway traffic control with ramp metering utilizing variational autoencoders
    Antonios, Georgantas
    Michalis, Lazarou
    Stelios, Timotheou
    Tania, Stathaki
    Christos, Panayiotou
    IFAC PAPERSONLINE, 2022, 55 (15): : 75 - 80
  • [6] Bayesian mixture variational autoencoders for multi-modal learning
    Keng-Te Liao
    Bo-Wei Huang
    Chih-Chun Yang
    Shou-De Lin
    Machine Learning, 2022, 111 : 4329 - 4357
  • [7] A Bayesian Nonlinear Reduced Order Modeling Using Variational AutoEncoders
    Akkari, Nissrine
    Casenave, Fabien
    Hachem, Elie
    Ryckelynck, David
    FLUIDS, 2022, 7 (10)
  • [8] Bayesian mixture variational autoencoders for multi-modal learning
    Liao, Keng-Te
    Huang, Bo-Wei
    Yang, Chih-Chun
    Lin, Shou-De
    MACHINE LEARNING, 2022, 111 (12) : 4329 - 4357
  • [9] The inverse variational problem for autoparallels
    Maulbetsch, C
    Shabanov, SV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (28): : 5355 - 5366
  • [10] Feature Dimensionality Reduction with Variational Autoencoders in Deep Bayesian Active Learning
    Col, Pinar Ezgi
    Ertekin, Seyda
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,