On projectivity of finitely generated modules

被引:2
|
作者
Durgun, Yilmaz [1 ]
Kalir, SIar [1 ]
Shibeshi, Arbsie Yasin [1 ]
机构
[1] Cukurova Univ, Dept Math, Adana, Turkiye
关键词
Fingp-indigent; finitely (singly) projective module; singp-indigent; subprojectivity domain; RINGS;
D O I
10.1080/00927872.2023.2186706
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent paper of Holston, Lopez-Permouth, Mastromatteo and Simental-Rodriguez, a ring R is defined to have no subprojective middle class if the subprojectivity domain of any R-module is the smallest or largest possible. In this work, we continue to use this idea of restricting the class of subprojectivity domains to classify rings. A finitely generated (resp., cyclic) module is called fingp-indigent (resp., singp-indigent), if its subprojectivity domain consists of only finitely projective (resp., singly projective) modules. We give a characterization of rings over which finitely generated (resp., cyclic) modules are either projective or fingp-indigent (resp., singp-indigent).
引用
收藏
页码:3623 / 3631
页数:9
相关论文
共 50 条