On co-maximal subgroup graph of Dn

被引:0
|
作者
Das, Angsuman [1 ]
Saha, Manideepa [2 ]
机构
[1] Presidency Univ, Dept Math, Kolkata, India
[2] NISER, Sch Math Sci, Bhubaneswar 752050, India
关键词
dihedral group; graph isomorphism; perfect graph;
D O I
10.22049/cco.2024.28396.1528
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a group and S be the collection of all non-trivial proper subgroups of G. The co-maximal subgroup graph Gamma(G) of a group G is defined to be a graph with S as the set of vertices and two distinct vertices H and K are adjacent if and only if HK = G. In this paper, we study the comaximal subgroup graph on finite dihedral groups. In particular, we study order, maximum and minimum degree, diameter, girth, domination number, chromatic number and perfectness of comaximal subgroup graph of dihedral groups. Moreover, we prove some isomorphism results on comaximal subgroup graph of dihedral groups.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] ON CO-MAXIMAL SUBGROUP GRAPH OF Zn
    Saha, Manideepa
    Biswas, Sucharita
    Das, Angsuman
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2022, 11 (04) : 221 - 228
  • [2] On co-maximal subgroup graph of a group
    Das, Angsuman
    Saha, Manideepa
    Al-Kaseasbeh, Saba
    RICERCHE DI MATEMATICA, 2024, 73 (04) : 2075 - 2089
  • [3] On co-maximal subgroup graph of a group-IIOn co-maximal subgroup graph of a group-IIA. Das, M. Saha
    Angsuman Das
    Manideepa Saha
    Ricerche di Matematica, 2025, 74 (1) : 91 - 104
  • [4] On co-maximal subgroup graph of a group-II
    Das, Angsuman
    Saha, Manideepa
    RICERCHE DI MATEMATICA, 2023,
  • [5] A generalization of co-maximal graph of commutative rings
    Biswas, B.
    Kar, S.
    Sen, M. K.
    Dutta, T. K.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (01)
  • [6] Subgraph of generalized co-maximal graph of commutative rings
    Biswas, B.
    Kar, S.
    Sen, M. K.
    SOFT COMPUTING, 2022, 26 (04) : 1587 - 1596
  • [7] Co-maximal graph of non-commutative rings
    Wang, Hsin-Ju
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (2-3) : 633 - 641
  • [8] A Note on Co-Maximal Ideal Graph of Commutative Rings
    Akbari, S.
    Miraftab, B.
    Nikandish, R.
    ARS COMBINATORIA, 2017, 134 : 261 - 265
  • [9] Co-maximal Graph, its Planarity and Domination Number
    Sinha, Deepa
    Rao, Anita Kumari
    JOURNAL OF INTERCONNECTION NETWORKS, 2020, 20 (02)
  • [10] Subgraph of generalized co-maximal graph of commutative rings
    B. Biswas
    S. Kar
    M. K. Sen
    Soft Computing, 2022, 26 : 1587 - 1596