Spectral properties of local and nonlocal problems for the diffusion-wave equation of fractional order

被引:0
|
作者
Adil, N.
Berdyshev, A. S. [1 ]
机构
[1] Abai Kazakh Natl Pedag Univ, Alma Ata, Kazakhstan
来源
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS | 2023年 / 110卷 / 02期
关键词
diffusion-wave equations; fractional order equations; boundary value problems; strong solution; Volterra property; eigenvalue; BOUNDARY-VALUE PROBLEM; MIXED-TYPE EQUATION; ROOT FUNCTIONS; SYSTEM; SOLVABILITY;
D O I
10.31489/2023M2/4-20
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper investigates the issues of solvability and spectral properties of local and nonlocal problems for the fractional order diffusion-wave equation. The regular and strong solvability to problems stated in the domains, both with characteristic and non-characteristic boundaries are proved. Unambiguous solvability is established and theorems on the existence of eigenvalues or the Volterra property of the problems under consideration are proved.
引用
收藏
页码:4 / 20
页数:17
相关论文
共 50 条
  • [1] Solvability and Volterra property of nonlocal problems for mixed fractional-order diffusion-wave equation
    Adil, Nauryzbay
    Bersyhev, Abdumauvlen S. S.
    Eshmatov, B. E.
    Baishemirov, Zharasbek D. D.
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [2] Solvability and Volterra property of nonlocal problems for mixed fractional-order diffusion-wave equation
    Nauryzbay Adil
    Abdumauvlen S. Berdyshev
    B. E. Eshmatov
    Zharasbek D. Baishemirov
    Boundary Value Problems, 2023
  • [3] Fractional-order diffusion-wave equation
    ElSayed, AMA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 311 - 322
  • [4] The fundamental solution of a diffusion-wave equation of fractional order
    Pskhu, A. V.
    IZVESTIYA MATHEMATICS, 2009, 73 (02) : 351 - 392
  • [5] Backward problems in time for fractional diffusion-wave equation
    Floridia, G.
    Yamamoto, M.
    INVERSE PROBLEMS, 2020, 36 (12)
  • [6] CONTINUITY WITH RESPECT TO FRACTIONAL ORDER OF THE TIME FRACTIONAL DIFFUSION-WAVE EQUATION
    Nguyen Huy Tuan
    O'Regan, Donal
    Tran Bao Ngoc
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 773 - 793
  • [7] Spectral method for the fractional diffusion-wave equation with variable coefficients
    Chen, Wenping
    Lu, Shujuan
    Chen, Hu
    Liu, Haiyu
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 7827 - 7832
  • [8] Simultaneous Determination of the Order and a Coefficient in a Fractional Diffusion-Wave Equation
    Wei, Ting
    Deng, Ruidi
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [9] Asymptotic properties of solutions of the fractional diffusion-wave equation
    Kochubei, Anatoly N.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) : 881 - 896
  • [10] Asymptotic properties of solutions of the fractional diffusion-wave equation
    Anatoly N. Kochubei
    Fractional Calculus and Applied Analysis, 2014, 17 : 881 - 896