Being Bayesian in the 2020s: opportunities and challenges in the practice of modern applied Bayesian statistics

被引:3
|
作者
Bon, Joshua J. J. [1 ,2 ]
Bretherton, Adam [1 ,2 ]
Buchhorn, Katie [1 ,2 ]
Cramb, Susanna [1 ,4 ]
Drovandi, Christopher [1 ,2 ]
Hassan, Conor [1 ,2 ]
Jenner, Adrianne L. L. [1 ,2 ]
Mayfield, Helen J. J. [1 ,5 ]
McGree, James M. M. [1 ,2 ]
Mengersen, Kerrie [1 ,2 ]
Price, Aiden [1 ,2 ]
Salomone, Robert [1 ,3 ]
Santos-Fernandez, Edgar [1 ,2 ]
Vercelloni, Julie [1 ,2 ]
Wang, Xiaoyu [1 ,2 ]
机构
[1] Queensland Univ Technol, Ctr Data Sci, Brisbane, Qld, Australia
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld, Australia
[3] Queensland Univ Technol, Sch Comp Sci, Brisbane, Qld, Australia
[4] Queensland Univ Technol, Sch Publ Hlth & Social Work, Brisbane, Qld, Australia
[5] Univ Queensland, Sch Publ Hlth, St Lucia, Qld, Australia
基金
澳大利亚国家健康与医学研究理事会; 澳大利亚研究理事会;
关键词
intelligent data collection; federated analysis; new data sources; implicit models; model transfer; Bayesian software products; OPTIMAL-DESIGN; REGRESSION; INFERENCE; NETWORK; ADVANTAGES; TRENDS;
D O I
10.1098/rsta.2022.0156
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Building on a strong foundation of philosophy, theory, methods and computation over the past three decades, Bayesian approaches are now an integral part of the toolkit for most statisticians and data scientists. Whether they are dedicated Bayesians or opportunistic users, applied professionals can now reap many of the benefits afforded by the Bayesian paradigm. In this paper, we touch on six modern opportunities and challenges in applied Bayesian statistics: intelligent data collection, new data sources, federated analysis, inference for implicit models, model transfer and purposeful software products. This article is part of the theme issue `Bayesian inference: challenges, perspectives, and prospects'.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Challenges and Opportunities for Bayesian Statistics in Proteomics
    Crook, Oliver M.
    Chung, Chun-Wa
    Deane, Charlotte M.
    JOURNAL OF PROTEOME RESEARCH, 2022, 21 (04) : 849 - 864
  • [2] Midlife in the 2020s: Opportunities and Challenges
    Infurna, Frank J.
    Gerstorf, Denis
    Lachman, Margie E.
    AMERICAN PSYCHOLOGIST, 2020, 75 (04) : 470 - 485
  • [4] BAYESIAN STATISTICS AS APPLIED TO HYPERTENSION DIAGNOSIS
    BLINOWSKA, A
    CHATELLIER, G
    BERNIER, J
    LAVRIL, M
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1991, 38 (07) : 699 - 706
  • [5] Rising Rates of Adolescent Depression in the United States: Challenges and Opportunities in the 2020s
    Wilson, Sylia
    Dumornay, Nathalie M.
    JOURNAL OF ADOLESCENT HEALTH, 2022, 70 (03) : 354 - 355
  • [6] The error-statistical philosophy and the practice of Bayesian statistics: Comments on Gelman and Shalizi: Philosophy and the practice of Bayesian statistics'
    Mayo, Deborah G.
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2013, 66 (01): : 57 - 64
  • [7] Cocoa production in the 2020s: challenges and solutions
    Kongor, John Edem
    Owusu, Margaret
    Oduro-Yeboah, Charlotte
    CABI AGRICULTURE & BIOSCIENCE, 2024, 5 (01):
  • [8] Rejoinder to discussion of Philosophy and the practice of Bayesian statistics'
    Gelman, Andrew
    Shalizi, Cosma
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2013, 66 (01): : 76 - 80
  • [9] Bayesian statistics in anesthesia practice: a tutorial for anesthesiologists
    Introna, Michele
    van den Berg, Johannes P.
    Eleveld, Douglas J.
    Struys, Michel M. R. F.
    JOURNAL OF ANESTHESIA, 2022, 36 (02) : 294 - 302
  • [10] Bayesian statistics in anesthesia practice: a tutorial for anesthesiologists
    Michele Introna
    Johannes P. van den Berg
    Douglas J. Eleveld
    Michel M. R. F. Struys
    Journal of Anesthesia, 2022, 36 : 294 - 302