Depth-based 3D human pose refinement: Evaluating the refinet framework

被引:1
|
作者
D'Eusanio, Andrea [1 ]
Simoni, Alessandro [1 ]
Pini, Stefano [1 ]
Borghi, Guido [3 ]
Vezzani, Roberto [1 ,2 ]
Cucchiara, Rita [1 ,2 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Engn Enzo Ferrari DIEF, I-41125 Modena, Italy
[2] Univ Modena & Reggio Emilia, Artificial Intelligence Res & Innovat Ctr AIRI, I-41125 Modena, Italy
[3] Univ Bologna, Dipartimento Informat Sci & Ingn DISI, I-47521 Cesena, Italy
关键词
3D Human pose estimation; Human pose refinement; Depth maps; Point cloud;
D O I
10.1016/j.patrec.2023.03.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, Human Pose Estimation has achieved impressive results on RGB images. The advent of deep learning architectures and large annotated datasets have contributed to these achievements. However, little has been done towards estimating the human pose using depth maps, and especially towards obtaining a precise 3D body joint localization. To fill this gap, this paper presents RefiNet, a depth-based 3D human pose refinement framework. Given a depth map and an initial coarse 2D human pose, RefiNet regresses a fine 3D pose. The framework is composed of three modules, based on different data representations, i.e. 2D depth patches, 3D human skeletons, and point clouds. An extensive experimental evaluation is carried out to investigate the impact of the model hyper-parameters and to compare RefiNet with off-the-shelf 2D methods and literature approaches. Results confirm the effectiveness of the proposed framework and its limited computational requirements.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 191
页数:7
相关论文
共 50 条
  • [1] RefiNet: 3D Human Pose Refinement with Depth Maps
    D'Eusanio, Andrea
    Pini, Stefano
    Borghi, Guido
    Vezzani, Roberto
    Cucchiara, Rita
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2320 - 2327
  • [2] Residual Pose: A Decoupled Approach for Depth-based 3D Human Pose Estimation
    Martinez-Gonzalez, Angel
    Villamizar, Michael
    Canevet, Olivier
    Odobez, Jean-Marc
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10313 - 10318
  • [3] Depth-based 3D Hand Pose Tracking
    Quach, Kha Gia
    Chi Nhan Duong
    Luu, Khoa
    Bui, Tien D.
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2746 - 2751
  • [4] A Generative Model for Depth-based Robust 3D Facial Pose Tracking
    Sheng, Lu
    Cai, Jianfei
    Cham, Tat-Jen
    Pavlovic, Vladimir
    Ngan, King Ngi
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4598 - 4607
  • [5] Mono-DCNet: Monocular 3D Object Detection via Depth-based Centroid Refinement and Pose Estimation
    Astudillo, Armando
    Al-Kaff, Abdulla
    Garcia, Fernando
    [J]. 2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 664 - 669
  • [6] Visibility Constrained Generative Model for Depth-Based 3D Facial Pose Tracking
    Sheng, Lu
    Cai, Jianfei
    Cham, Tat-Jen
    Pavlovic, Vladimir
    Ngan, King Ngi
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (08) : 1994 - 2007
  • [7] TriHorn-Net: A model for accurate depth-based 3D hand pose estimation
    Rezaei, Mohammad
    Rastgoo, Razieh
    Athitsos, Vassilis
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 223
  • [8] Depth-Based 3D Hand Pose Estimation: From Current Achievements to Future Goals
    Yuan, Shanxin
    Garcia-Hernando, Guillermo
    Stenger, Bjorn
    Moon, Gyeongsik
    Chang, Ju Yong
    Lee, Kyoung Mu
    Molchanov, Pavlo
    Kautz, Jan
    Honari, Sina
    Ge, Liuhao
    Yuan, Junsong
    Chen, Xinghao
    Wang, Guijin
    Yang, Fan
    Akiyama, Kai
    Wu, Yang
    Wan, Qingfu
    Madadi, Meysam
    Escalera, Sergio
    Li, Shile
    Lee, Dongheui
    Oikonomidis, Iason
    Argyros, Antonis
    Kim, Tae-Kyun
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2636 - 2645
  • [9] Personalized 3D Human Pose and Shape Refinement
    Wehrbein, Tom
    Rosenhahn, Bodo
    Matthews, Iain
    Stoll, Carsten
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 4191 - 4201
  • [10] Attention-Based 3D Human Pose Sequence Refinement Network
    Kim, Do-Yeop
    Chang, Ju-Yong
    [J]. SENSORS, 2021, 21 (13)