Polaron-Mediated Transport in BiVO4 Photoanodes for Solar Water Oxidation

被引:84
|
作者
Wu, Hao [3 ,5 ]
Zhang, Lei [1 ,2 ]
Qu, Songying [3 ]
Du, Aijun [1 ,2 ]
Tang, Junwang [4 ]
Ng, Yun Hau [3 ]
机构
[1] Queensland Univ Technol, Fac Sci, Sch Chem & Phys, Brisbane, Qld 4001, Australia
[2] Queensland Univ Brisbane, Fac Sci, Ctr Mat Sci, Brisbane, Qld 4001, Australia
[3] City Univ Hong Kong, Low Carbon & Climate Impact Res Ctr, Sch Energy & Environm, Hong Kong, Peoples R China
[4] UCL, Dept Chem Engn, London WC1E 7JE, England
[5] Macau Univ Sci & Technol, Macao Inst Mat Sci & Engn, Fac Innovat Engn, Taipa, Macao, Peoples R China
关键词
PHOTOANODES; CONDUCTIVITY; PHOTOCURRENT; TEMPERATURE; BEHAVIOR;
D O I
10.1021/acsenergylett.3c00465
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen dopants and oxygen vacancies (OVs) play crucial roles in BiVO4 photoanodes. However, the decisive factor determining the charge transport of the hydrogenated BiVO4, particularly with electron small polaron formation, remains elusive. Here we show a decreased charge transport barrier upon mildly hydrogenating the nanoporous BiVO4 photoanode, as evidenced by the thermally activating photocurrent responses. Monochromatic light photoelectrochemical performance, temperature-dependent conductivity, proton nuclear magnetic resonance, and density functional theory calculation disclose that the external hydrogen atoms occupy the intrinsic OVs in the BiVO4, reducing the hopping activation energy and facilitating electron small polaron transport. The resulting BiVO4 photoanode with NiFeOx cocatalyst achieves an applied-bias photon-to-current efficiency of 1.91% at 0.58 V vs RHE with front-illumination. This study extends the common understanding of the beneficial role in conventional donor density/ surface chemisorption mediations of hydrogen doping to now include small polaron hopping.
引用
收藏
页码:2177 / 2184
页数:8
相关论文
共 50 条
  • [1] Enhancing photostability of BiVO4 photoanodes for solar water oxidation
    Choi, Kyoung-Shin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [2] Enabling Solar Water Oxidation by BiVO4 Photoanodes in Basic Media
    Lee, Dongho
    Kvit, Alexander
    Choi, Kyoung-Shin
    CHEMISTRY OF MATERIALS, 2018, 30 (14) : 4704 - 4712
  • [3] Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation
    Ma, Yimeng
    Pendlebury, Stephanie R.
    Reynal, Anna
    Le Formal, Florian
    Durrant, James R.
    CHEMICAL SCIENCE, 2014, 5 (08) : 2964 - 2973
  • [4] BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation
    Pilli, Satyananda Kishore
    Deutsch, Todd G.
    Furtak, Thomas E.
    Brown, Logan D.
    Turner, John A.
    Herring, Andrew M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (09) : 3273 - 3278
  • [5] Engineering Interfaces to Steer Hole Dynamics of BiVO4 Photoanodes for Solar Water Oxidation
    Xu, Xiaoyong
    Jin, Sen
    Yang, Chi
    Pan, Jing
    Du, Wei
    Hu, Jingguo
    Zeng, Haibo
    Zhou, Yong
    SOLAR RRL, 2019, 3 (11)
  • [6] BiVO4 Heterojunctions as Efficient Photoanodes for Photoelectrochemical Water Oxidation
    He, Dongqing
    Wang, Qi
    Zhang, Weijun
    Liu, Xiaodong
    Cui, Xianghong
    CHEMPHOTOCHEM, 2023, 7 (11)
  • [7] Photocharged BiVO4 photoanodes for improved solar water splitting
    Trzesniewski, Bartek J.
    Smith, Wilson A.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (08) : 2919 - 2926
  • [8] Elaborately Modified BiVO4 Photoanodes for Solar Water Splitting
    Kim, Jin Hyun
    Lee, Jae Sung
    ADVANCED MATERIALS, 2019, 31 (20)
  • [9] Boosting Charge Transport in BiVO4 Photoanode for Solar Water Oxidation
    Lu, Yuan
    Yang, Yilong
    Fan, Xinyi
    Li, Yiqun
    Zhou, Dinghua
    Cai, Bo
    Wang, Luyang
    Fan, Ke
    Zhang, Kan
    ADVANCED MATERIALS, 2022, 34 (08)
  • [10] Photothermal-enhanced solar water oxidation on NiO/amorphous carbon/BiVO4 and CoOx/amorphous carbon/BiVO4 photoanodes
    He, Huichao
    Xiong, Yuli
    Xiao, Hao
    Han, Tao
    Guo, Yujie
    Li, Jiahe
    Chen, Qiwen
    Zhang, Yunhuai
    Du, Jinyan
    Ke, Gaili
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (19) : 5776 - 5784