PANDORA: Deep Graph Learning Based COVID-19 Infection Risk Level Forecasting

被引:2
|
作者
Yu, Shuo [1 ]
Xia, Feng [2 ]
Wang, Yueru [3 ]
Li, Shihao [4 ]
Febrinanto, Falih Gozi [5 ]
Chetty, Madhu [5 ]
机构
[1] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
[2] RMIT Univ, Sch Comp Technol, Melbourne, Vic 3000, Australia
[3] Natl Tsing Hua Univ, Dept Math, Hsinchu 30013, Taiwan
[4] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China
[5] Federat Univ Australia, Inst Innovat Sci & Sustainabil, Ballarat, Vic 3353, Australia
基金
中国国家自然科学基金;
关键词
COVID-19; Forecasting; Pandemics; Transportation; Task analysis; Economics; Predictive models; Coronavirus disease 2019 (COVID-19); deep graph learning; forecasting; infection risk; network motif; HUMAN MOBILITY; CONSEQUENCES;
D O I
10.1109/TCSS.2022.3229671
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Coronavirus disease 2019 (COVID-19) as a global pandemic causes a massive disruption to social stability that threatens human life and the economy. An effective forecasting system is arguably important to provide an early signal of the risk of COVID-19 infection so that the authorities are ready to protect the people from the worst. However, making a good forecasting model for infection risks in different cities or regions is not an easy task, because it has a lot of influential factors that are difficult to be identified manually. To address the current limitations, we propose a deep graph learning model, called PANDORA, to predict the infection risks of COVID-19, by considering all essential factors and integrating them into a geographical network. The framework uses geographical position relationships and transportation frequency as higher order structural properties formulated by higher order network structures (i.e., network motifs). Moreover, four significant node attributes (i.e., multiple features of a particular area, including climate, medical condition, economy, and human mobility) are also considered. We propose three different aggregators to better aggregate node attributes and structural features, namely, Hadamard, Summation, and Connection. Experimental results over real data show that PANDORA outperforms the baseline methods with higher accuracy and faster convergence speed, no matter which aggregator is chosen.
引用
收藏
页码:717 / 730
页数:14
相关论文
共 50 条
  • [1] Epidemiological forecasting of COVID-19 infection using deep learning approach
    Blagojevic, Andela
    Sustersic, Tijana
    Filipovic, Nenad
    [J]. 2021 IEEE 21ST INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (IEEE BIBE 2021), 2021,
  • [2] Deep Learning-Based Forecasting of COVID-19 in India
    Pillai, Punitha Kumaresa
    Durairaj, Devaraj
    Samivel, Kanthammal
    [J]. JOURNAL OF TESTING AND EVALUATION, 2022, 50 (01) : 225 - 242
  • [3] Deep learning via LSTM models for COVID-19 infection forecasting in India
    Chandra, Rohitash
    Jain, Ayush
    Chauhan, Divyanshu Singh
    [J]. PLOS ONE, 2022, 17 (01):
  • [4] Deep Learning-Based Knowledge Graph Generation for COVID-19
    Kim, Taejin
    Yun, Yeoil
    Kim, Namgyu
    [J]. SUSTAINABILITY, 2021, 13 (04) : 1 - 20
  • [5] A novel approach for COVID-19 Infection forecasting based on multi-source deep transfer learning
    Garg, Sonakshi
    Kumar, Sandeep
    Muhuri, Pranab K.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [6] Statistical Machine and Deep Learning Methods for Forecasting of Covid-19
    Juneja, Mamta
    Saini, Sumindar Kaur
    Kaur, Harleen
    Jindal, Prashant
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2024, 138 (01) : 497 - 524
  • [7] Deep learning model for forecasting COVID-19 outbreak in Egypt
    Marzouk, Mohamed
    Elshaboury, Nehal
    Abdel-Latif, Amr
    Azab, Shimaa
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 153 : 363 - 375
  • [8] COVID-19 in Iran: Forecasting Pandemic Using Deep Learning
    Kafieh, Rahele
    Arian, Roya
    Saeedizadeh, Narges
    Amini, Zahra
    Serej, Nasim Dadashi
    Minaee, Shervin
    Yadav, Sunil Kumar
    Vaezi, Atefeh
    Rezaei, Nima
    Javanmard, Shaghayegh Haghjooy
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [9] Forecasting COVID-19 Cases in Morocco: A Deep Learning Approach
    Hankar, Mustapha
    Birjali, Marouane
    Beni-Hssane, Abderrahim
    [J]. NETWORKING, INTELLIGENT SYSTEMS AND SECURITY, 2022, 237 : 845 - 857
  • [10] Weather and population based forecasting of novel COVID-19 using deep learning approaches
    A. Ronald Doni
    T. Sasi Praba
    S. Murugan
    [J]. International Journal of System Assurance Engineering and Management, 2022, 13 : 100 - 110