Heterogeneous information fusion based graph collaborative filtering recommendation

被引:0
|
作者
Mu, Ruihui [1 ]
Zeng, Xiaoqin [2 ]
Zhang, Jiying [1 ]
机构
[1] Xinxiang Univ, Coll Comp & Informat Engn, Xinxiang, Henan, Peoples R China
[2] Hohai Univ, Coll Comp & Informat, Nanjing, Jiangsu, Peoples R China
关键词
Heterogeneous information; collaborative filtering; graph neural network; recommender systems;
D O I
10.3233/IDA-227025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, with the application of 5G, graph-based recommendation algorithms have become a research hotspot. Graph neural networks encode the graph structure information in the node representation through an iterative neighbor aggregation method, which can effectively alleviate the problem of data sparsity. In addition, more and more information graph can be used in collaborative filtering recommendation, such as user social information graph, user or item attributed information graph, etc. In this paper, we propose a novel heterogeneous information fusion based graph collaborative filtering method, which models graph data from different heterogeneous graph, and combines them together to enhance presentation learning. Through information propagation and aggregation, our model can learn the latent embeddings effectively and enhance the performance of recommendation. Experimental results on different datasets validate the outperformance of the proposed framework.
引用
下载
收藏
页码:1595 / 1613
页数:19
相关论文
共 50 条
  • [1] Fusion Recommendation System Based on Collaborative Filtering and Knowledge Graph
    Lu, Donglei
    Zhu, Dongjie
    Du, Haiwen
    Sun, Yundong
    Wang, Yansong
    Li, Xiaofang
    Qu, Rongning
    Cao, Ning
    Higgs, Russell
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 42 (03): : 1133 - 1146
  • [2] Graph Filtering for Recommendation on Heterogeneous Information Networks
    Zhang, Chuanyan
    Hong, Xiaoguang
    Zhang, Chuanyan (chuanyan_zhang@sina.cn), 1600, Institute of Electrical and Electronics Engineers Inc., United States (08): : 52872 - 52883
  • [3] Graph Filtering for Recommendation on Heterogeneous Information Networks
    Zhang, Chuanyan
    Hong, Xiaoguang
    IEEE ACCESS, 2020, 8 : 52872 - 52883
  • [4] WeMap Recommendation by Fusion of Knowledge Graph and Collaborative Filtering
    Niu X.
    Yang J.
    Yan H.
    Journal of Geo-Information Science, 2024, 26 (04) : 967 - 977
  • [5] A NOVEL NEURAL COLLABORATIVE FILTERING RECOMMENDATION BASED ON SIDE INFORMATION FUSION
    Mu, Ruihui
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2023, 76 (01): : 84 - 95
  • [6] Collaborative filtering recommendation algorithm based on graph theory
    Department of Information and Engineering, Yanshan University, Qinhuangdao 066000, China
    不详
    J. Comput. Inf. Syst., 2007, 5 (1783-1788): : 1783 - 1788
  • [7] Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks
    Zhao, Huan
    Yao, Quanming
    Li, Jianda
    Song, Yangqiu
    Lee, Dik Lun
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 635 - 644
  • [8] Friends recommendation algorithm based on graph mining and collaborative filtering
    Bin, Zhang
    Dong, Wang Xiao
    ADVANCES IN COMPUTING, CONTROL AND INDUSTRIAL ENGINEERING, 2012, 235 : 399 - 402
  • [9] A Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering
    Jiang, Bo
    Yang, Junchen
    Qin, Yanbin
    Wang, Tian
    Wang, Muchou
    Pan, Weifeng
    IEEE ACCESS, 2021, 9 (09): : 50880 - 50892
  • [10] Collaborative Filtering Recommendation Algorithm Based on Contextual Information
    Guo, Jia
    Shen, Jian-Jing
    2016 INTERNATIONAL CONFERENCE ON SERVICE SCIENCE, TECHNOLOGY AND ENGINEERING (SSTE 2016), 2016, : 28 - 35