Recyclable metal fuels as future zero-carbon energy carrier

被引:8
|
作者
Halter, F. [1 ,2 ,6 ]
Jeanjean, S. [1 ,2 ]
Chauveau, C. [1 ]
Balat-Pichelin, M. [3 ]
Brilhac, J. F. [4 ]
Andrieu, A. [4 ]
Schonnenbeck, C. [4 ]
Leyssens, G. [4 ]
Dumand, C. [5 ]
机构
[1] CNRS, ICARE, Ave Rech Sci, F-45071 Orleans 2, France
[2] Univ Orleans, Orleans, France
[3] CNRS, PROMES, 7 Rue Four Solaire, F-66120 Font Romeu, France
[4] Univ Haute Alsace, LGRE, UR 2334, F-68093 Mulhouse, France
[5] STELLANTIS Res Innovat & Adv Technol Sci Energy, Powertrain & Converter Rte Gisy, F-78140 Velizy Villacoublay, France
[6] 1C Ave Rech Sci, F-45067 Orleans 2, France
关键词
Zero-carbon energy carrier; Metal particles; Carbothermal reduction; Direct combustion; Aluminum; Magnesium; Solar energy; CARBOTHERMAL REDUCTION; PARTICLE COMBUSTION; MAGNESIUM PARTICLES; ALUMINUM; IGNITION; OXIDES; RATES; NOX; MGO; PM;
D O I
10.1016/j.jaecs.2022.100100
中图分类号
O414.1 [热力学];
学科分类号
摘要
What if small metal particles were the future of energy? Combustion of these metal particles releases a large amount of energy and has the advantage of not emitting carbon dioxide. These particles, burning in air, produce metal oxides which can then be regenerated using solar energy. This cycle energy production / recycling can make it possible to store energy produced with renewable energy in a secure and sustainable way, so that it can be used where and when it is needed. The STELLAR project described in this paper, funded by the French research agency, allows a group of research and industrial partners to work on this original and promising concept. This work is part of a disruptive technology to solve the problem of global warming in the long term.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Recyclable metal fuels for clean and compact zero-carbon power
    Bergthorson, Jeffrey M.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2018, 68 : 169 - 196
  • [2] Direct combustion of recyclable metal fuels for zero-carbon heat and power
    Bergthorson, J. M.
    Goroshin, S.
    Soo, M. J.
    Julien, P.
    Palecka, J.
    Frost, D. L.
    Jarvis, D. J.
    [J]. APPLIED ENERGY, 2015, 160 : 368 - 382
  • [3] zero-carbon energy the promise of a clean future
    Lew, Debra
    Orths, Antje
    [J]. IEEE POWER & ENERGY MAGAZINE, 2022, 20 (04): : 14 - 16
  • [4] Direct combustion of recyclable metal fuels for zero-carbon heat and power (vol 160, pg 368, 2015)
    Bergthorson, J. M.
    Goroshin, S.
    Soo, M. J.
    Julien, P.
    Palecka, J.
    Frost, D. L.
    Jarvis, D. J.
    [J]. APPLIED ENERGY, 2017, 202 : 784 - 784
  • [5] A zero-carbon, reliable and affordable energy future in Australia
    Lu, Bin
    Blakers, Andrew
    Stocks, Matthew
    Cheng, Cheng
    Nadolny, Anna
    [J]. ENERGY, 2021, 220
  • [6] An Integrated Scenario Analysis for Future Zero-Carbon Energy System
    Zhang, Qi
    Li, Hailong
    Mclellan, Benjamin
    [J]. INTERNATIONAL CONFERENCE ON APPLIED ENERGY, ICAE2014, 2014, 61 : 2801 - 2804
  • [7] An integrated scenario analysis for future zero-carbon energy system
    Zhang, Qi
    Mclellan, Benjamin C.
    Li, Hailong
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (07) : 993 - 1010
  • [8] Moving towards a net zero, zero-carbon future
    Nighbor, Derek
    [J]. PULP & PAPER-CANADA, 2022, 123 (01) : 9 - 9
  • [9] Ammonia Sprays for Combustion: A Review Use of ammonia as a zero-carbon energy carrier
    Giles, A. P.
    Hao, S.
    Harper, J.
    Goktepe, B.
    Bowen, P. J.
    Valera-Medina, A.
    [J]. JOHNSON MATTHEY TECHNOLOGY REVIEW, 2024, 68 (04): : 530 - 548
  • [10] The energy economics of the zero-carbon grid
    Edwards, Chris
    [J]. Engineering and Technology, 2020, 15 (10): : 24 - 27