PMOT2023: A Large-Scale Multi-Object Tracking (MOT) Dataset with Application to Phytoplankton Observation

被引:1
|
作者
Yu, Jiaao [1 ]
Lv, Qingxuan [1 ]
Li, Yuezun [1 ]
Dong, Junyu [1 ]
Zhao, Haoran [2 ]
Li, Qiong [3 ]
机构
[1] Ocean Univ China, Coll Comp Sci & Technol, Qingdao 266400, Peoples R China
[2] Qingdao Univ Technol, Sch Informat & Control Engn, Qingdao 266520, Peoples R China
[3] Qingdao Agr Univ, Dept Sci & Informat Sci, Qingdao 266109, Peoples R China
基金
中国国家自然科学基金;
关键词
phytoplankton; multi-object tracking; dataset; PMOT2023;
D O I
10.3390/jmse11061141
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Phytoplankton play a critical role in marine food webs and biogeochemical cycles, and their abundance must be monitored to prevent disasters and improve the marine environment. Although existing algorithms for automatic phytoplankton identification at the image level are available, there are currently no video-level algorithms. This lack of datasets is a significant obstacle to the development of video-level automatic identification algorithms for phytoplankton observations. Deep learning-based algorithms, in particular, require high-quality datasets to achieve optimal results. To address this issue, we propose the PMOT2023 (Phytoplankton Multi-Object Tracking), a multi-video tracking dataset based on 48,000 micrographs captured by in situ observation devices. The dataset comprises 21 classes of phytoplankton and can aid in the development of advanced video-level identification methods. Multi-object tracking algorithms can detect, classify, count, and estimate phytoplankton density. As a video-level automatic identification algorithm, multi-object tracking addresses trajectory tracking, concentration estimation, and other requirements in original phytoplankton observation, helping to prevent marine ecological disasters. Additionally, the PMOT2023 dataset will serve as a benchmark to evaluate the performance of future phytoplankton identification models and provide a foundation for further research on automatic phytoplankton identification algorithms.
引用
收藏
页数:18
相关论文
共 18 条
  • [1] A Solution for Large-Scale Multi-Object Tracking
    Beard, Michael
    Vo, Ba Tuong
    Vo, Ba-Ngu
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 2754 - 2769
  • [2] Large-Scale Multi-Object Rearrangement
    Huang, Eric
    Jia, Zhenzhong
    Mason, Matthew T.
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 211 - 218
  • [3] Data association algorithm for large-scale multi-object tracking with complex interactions
    Vo, Garret
    Zakharov, Dmitri
    Park, Chiwoo
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (06)
  • [4] Tiny Object Tracking: A Large-Scale Dataset and a Baseline
    Zhu, Yabin
    Li, Chenglong
    Liu, Yao
    Wang, Xiao
    Tang, Jin
    Luo, Bin
    Huang, Zhixiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 10273 - 10287
  • [5] SportsMOT: A Large Multi-Object Tracking Dataset in Multiple Sports Scenes
    Cui, Yutao
    Zeng, Chenkai
    Zhao, Xiaoyu
    Yang, Yichun
    Wu, Gangshan
    Wang, Limin
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 9887 - 9897
  • [6] TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild
    Mueller, Matthias
    Bibi, Adel
    Giancola, Silvio
    Alsubaihi, Salman
    Ghanem, Bernard
    COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 310 - 327
  • [7] JRMOT: A Real-Time 3D Multi-Object Tracker and a New Large-Scale Dataset
    Shenoi, Abhijeet
    Patel, Mihir
    Gwak, JunYoung
    Goebel, Patrick
    Sadeghian, Amir
    Rezatofighi, Hamid
    Martin-Martin, Roberto
    Savarese, Silvio
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10335 - 10342
  • [8] Application of Multi-Object Tracking with Siamese Track-RCNN to the Human in Events Dataset
    Shuai, Bing
    Berneshawi, Andrew
    Wang, Manchen
    Liu, Chunhui
    Modolo, Davide
    Li, Xinyu
    Tighe, Joseph
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 4625 - 4629
  • [9] MCMOD: The Multi-Category Large-Scale Dataset for Maritime Object Detection
    Sun, Zihao
    Hu, Xiao
    Qi, Yining
    Huang, Yongfeng
    Li, Songbin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01): : 1657 - 1669
  • [10] A Large-Scale Hierarchical Multi-View RGB-D Object Dataset
    Lai, Kevin
    Bo, Liefeng
    Ren, Xiaofeng
    Fox, Dieter
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011, : 1817 - 1824