A Kato-Type Criterion for the Inviscid Limit of the Compressible Navier-Stokes System

被引:0
|
作者
Zou, Yonghui [1 ]
Xu, Xin [1 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Inviscid limit; Compressible Navier-Stokes equations; Boundary layer; VANISHING DISSIPATION LIMIT; WELL-POSEDNESS; PRANDTL EQUATIONS; WEAK SOLUTIONS; EXISTENCE; UNIQUENESS; FLOW;
D O I
10.1007/s00021-023-00798-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the inviscid limit of the compressible Navier-Stokes system with no-slip boundary condition in a smooth bounded domain O ? R-2. Inspired by the work of (Sueur in J Math Fluid Mech 16:163-178, 2014; Constantin et al. in Proc Am Math Soc 143:3075-3090, 2015), we obtain a sufficient condition for the convergence of the solution of the compressible Navier-Stokes equations to the solution of the compressible Euler equations in the energy space L-2(O) uniformly in time.
引用
收藏
页数:16
相关论文
共 50 条