Learning binary codes for fast image retrieval with sparse discriminant analysis and deep autoencoders

被引:0
|
作者
Hong, Son An [1 ]
Huu, Quynh Nguyen [2 ]
Viet, Dung Cu [2 ]
Thuy, Quynh Dao Thi [3 ]
Quoc, Tao Ngo [4 ]
机构
[1] Viet Hung Univ, Hanoi, Vietnam
[2] Thuyloi Univ, Hanoi, Vietnam
[3] Posts & Telecommun Inst Technol, Hanoi, Vietnam
[4] Vietnam Acad Sci & Technol, Inst Informat Technol, Hanoi, Vietnam
关键词
Content-based image retrieval (CBIR); sparse discriminant analysis; deep autoencoder; binary code; FRAMEWORK; NETWORK; GRAPH;
D O I
10.3233/IDA-226687
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image retrieval with relevant feedback on large and high-dimensional image databases is a challenging task. In this paper, we propose an image retrieval method, called BCFIR (Binary Codes for Fast Image Retrieval). BCFIR utilizes sparse discriminant analysis to select the most important original feature set, and solve the small class problem in the relevance feedback. Besides, to increase the retrieval performance on large-scale image databases, in addition to BCFIR mapping real-valued features to short binary codes, it also applies a bagging learning strategy to improve the ability general capabilities of autoencoders. In addition, our proposed method also takes advantage of both labeled and unlabeled samples to improve the retrieval precision. The experimental results on three databases demonstrate that the proposed method obtains competitive precision compared with other state-of-the-art image retrieval methods.
引用
收藏
页码:809 / 831
页数:23
相关论文
共 50 条
  • [1] Deep Learning of Binary Hash Codes for Fast Image Retrieval
    Lin, Kevin
    Yang, Huei-Fang
    Hsiao, Jen-Hao
    Chen, Chu-Song
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2015,
  • [2] Learning Deep Unsupervised Binary Codes for Image Retrieval
    Chen, Junjie
    Cheung, William K.
    Wang, Anran
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 613 - 619
  • [3] Rapid Image Retrieval with Binary Hash Codes Based on Deep Learning
    Deng, GuangWei
    Xu, Cheng
    Tu, XiaoHan
    Li, Tao
    Gao, Nan
    THIRD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2018, 10828
  • [4] Deep binary codes for large scale image retrieval
    Wu, Song
    Oerlemans, Ard
    Bakker, Erwin M.
    Lew, Michael S.
    NEUROCOMPUTING, 2017, 257 : 5 - 15
  • [5] Learning Multifunctional Binary Codes for Personalized Image Retrieval
    Liu, Haomiao
    Wang, Ruiping
    Shan, Shiguang
    Chen, Xilin
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (8-9) : 2223 - 2242
  • [6] Learning Multifunctional Binary Codes for Personalized Image Retrieval
    Haomiao Liu
    Ruiping Wang
    Shiguang Shan
    Xilin Chen
    International Journal of Computer Vision, 2020, 128 : 2223 - 2242
  • [7] Improving image retrieval effectiveness via sparse discriminant analysis
    Hong, Son An
    Huu, Quynh Nguyen
    Viet, Dung Cu
    Thuy, Quynh Dao Thi
    Quoc, Tao Ngo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 30807 - 30830
  • [8] Improving image retrieval effectiveness via sparse discriminant analysis
    Son An Hong
    Quynh Nguyen Huu
    Dung Cu Viet
    Quynh Dao Thi Thuy
    Tao Ngo Quoc
    Multimedia Tools and Applications, 2023, 82 : 30807 - 30830
  • [9] Deep binary constraint hashing for fast image retrieval
    Li, Yang
    Miao, Zhuang
    Wang, Jiabao
    Zhang, Yafei
    ELECTRONICS LETTERS, 2018, 54 (01) : 25 - 26
  • [10] Deep Supervised Binary Hash Codes for Footprint Image Retrieval
    Bao Wenxia
    Hu Wei
    Liang Dong
    Wang Nian
    Huang Fuxiang
    2020 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND HUMAN-COMPUTER INTERACTION (ICHCI 2020), 2020, : 138 - 141