This study aimed to investigate long-range atmospheric transport of selected POPs released due to the effects of mili-tary conflicts in regions to the south of Turkey's borders. Ten locations were selected to deploy passive air samplers at varying distances to the border on a southeast-west transect of the country, proximity-grouped as close, middle, and far. Sampling campaign included winter and transition months when desert dust transport events occur. Hypothesis of the study was that a decreasing trend would be observed with increasing distance to the border. Group comparisons based on statistical testing showed that PBDE-183, E45PCB, and dieldrin in winter; PBDE-28, PBDE-99, PBDE-154, p,p '-DDE, E14PBDE, and E25OCP in the transition period; and PBDE-28, PBDE-85, PBDE-99, PBDE-154, PBDE-190, PCB-52, E45PCB, p,p '-DDE, and E25OCP over the whole campaign had a decreasing trend on the transect. An analysis of concen-tration ratio to the background showed that long-range atmospheric transport impacted the study sites, especially those of close group in comparison to the local sources. Back-trajectory analyses indicated that there was transport from the conflict areas to sites in the close-proximity group, while farther sampling locations mostly received air masses from Europe, Russia, and former Soviet Union countries, followed by North Africa, rather than the military con-flict areas. In consequence, decrease in concentrations with distance and its relation to molecular weight through pro-portions, diagnostic ratios, analysis of concentration ratio to the background, and back-trajectory analyses support the effect of transport from the military-conflict area to its north.