Preconditioning of Summer Melt Ponds From Winter Sea Ice Surface Temperature

被引:5
|
作者
Thielke, Linda [1 ]
Fuchs, Niels [2 ,3 ]
Spreen, Gunnar [1 ]
Tremblay, Bruno [4 ]
Birnbaum, Gerit [3 ]
Huntemann, Marcus [1 ]
Hutter, Nils [3 ,5 ]
Itkin, Polona [6 ]
Jutila, Arttu [3 ]
Webster, Melinda A. [7 ,8 ]
机构
[1] Univ Bremen, Inst Environm Phys, Bremen, Germany
[2] Univ Hamburg, Inst Oceanog, Ctr Earth Syst Sustainabil, Hamburg, Germany
[3] Alfred Wegener Inst, Helmholtz Ctr Polar & Marine Res, Bremerhaven, Germany
[4] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada
[5] Univ Washington, Cooperat Inst Climate Ocean & Ecosyst Studies, Seattle, WA USA
[6] UiT Arctic Univ Norway, Tromso, Norway
[7] Univ Alaska Fairbanks, Fairbanks, AK USA
[8] Univ Washington, Seattle, WA USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
Arctic; sea ice; melt pond; surface temperature; airborne;
D O I
10.1029/2022GL101493
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Comparing helicopter-borne surface temperature maps in winter and optical orthomosaics in summer from the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition, we find a strong geometric correlation between warm anomalies in winter and melt pond location the following summer. Warm anomalies are associated with thinner snow and ice, that is, surface depression and refrozen leads, that allow for water accumulation during melt. Warm surface temperature anomalies in January were 0.3-2.5 K warmer on sea ice that later formed melt ponds. A one-dimensional steady-state thermodynamic model shows that the observed surface temperature differences are in line with the observed ice thickness and snow depth. We demonstrate the potential of seasonal prediction of summer melt pond location and coverage from winter surface temperature observations. A threshold-based classification achieves a correct classification for 41% of the melt ponds.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Winter Sea Ice Export From the Beaufort Sea as a Preconditioning Mechanism for Enhanced Summer Melt: A Case Study of 2016
    Babb, D. G.
    Landy, J. C.
    Barber, D. G.
    Galley, R. J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2019, 124 (09) : 6575 - 6600
  • [2] Detection of Melt Ponds on Arctic Summer Sea Ice From ICESat-2
    Tilling, R.
    Kurtz, N. T.
    Bagnardi, M.
    Petty, A. A.
    Kwok, R.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (23)
  • [3] Influence of Melt Ponds on the SSMIS-Based Summer Sea Ice Concentrations in the Arctic
    Zhao, Jiechen
    Yu, Yining
    Cheng, Jingjing
    Guo, Honglin
    Li, Chunhua
    Shu, Qi
    [J]. REMOTE SENSING, 2021, 13 (19)
  • [4] Salinity Control of Thermal Evolution of Late Summer Melt Ponds on Arctic Sea Ice
    Kim, Joo-Hong
    Moon, Woosok
    Wells, Andrew J.
    Wilkinson, Jeremy P.
    Langton, Tom
    Hwang, Byongjun
    Granskog, Mats A.
    Jones, David W. Rees
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (16) : 8304 - 8313
  • [5] The color of melt ponds on Arctic sea ice
    Lu, Peng
    Lepparanta, Matti
    Cheng, Bin
    Li, Zhijun
    Istomina, Larysa
    Heygster, Georg
    [J]. CRYOSPHERE, 2018, 12 (04): : 1331 - 1345
  • [6] The refreezing of melt ponds on Arctic sea ice
    Flocco, Daniela
    Feltham, Daniel L.
    Bailey, Eleanor
    Schroeder, David
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2015, 120 (02) : 647 - 659
  • [7] Observations of melt ponds on Arctic sea ice
    Fetterer, F
    Untersteiner, N
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1998, 103 (C11): : 24821 - 24835
  • [8] Reflective properties of melt ponds on sea ice
    Malinka, Aleksey
    Zege, Eleonora
    Istomina, Larysa
    Heygster, Georg
    Spreen, Gunnar
    Perovich, Donald
    Polashenski, Chris
    [J]. CRYOSPHERE, 2018, 12 (06): : 1921 - 1937
  • [9] Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent
    Ogi, Masayo
    Yamazaki, Koji
    Wallace, John M.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [10] Albedo and depth of melt ponds on sea-ice
    Morassutti, MP
    Ledrew, EF
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 1996, 16 (07) : 817 - 838