Compressive behavior of 3D printed concrete with different printing paths and concrete ages

被引:14
|
作者
Pan, Zuanfeng [1 ,2 ]
Si, Doudou [1 ,4 ]
Tao, Jinghong [3 ]
Xiao, Jianzhuang [1 ]
机构
[1] Tongji Univ, Coll Civil Engn, Shanghai 200092, Peoples R China
[2] Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
[3] Vanke Southwest Reg Business Grp, Chengdu 610095, Peoples R China
[4] Tongji Univ, Coll Civil Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printed concrete; Compressive strength; Printing path; Concrete age; Stress -strain relationship;
D O I
10.1016/j.cscm.2023.e01949
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As an intelligent construction technology, 3D printed concrete has made great progress in recent years, but research on the development law of hardened mechanical properties of 3D printed concrete is relatively limited, and the influence of printing path on compressive behavior of 3D printed concrete still needs further research. This paper proposed a new printing path for extrusion based 3D printed concrete and investigated the compressive behavior of hardened concrete printed by the new printing path. The effect of printing path, concrete age, printing speed, specimen size, and replacement of natural sand by recycled sand were evaluated through compressive tests of specimens printed by different path at different ages. Compared with the traditional printing path, the new printing path could increase peak strain, elastic modulus, and cubic compressive strength of the printed concrete. The new printing path provided a preferable alternative solution for printed concrete subjected to compression. The results also indicate that the compressive strength of printed concrete at 3 days can reach 45%-62% of the 28-day compressive strength, and the compressive strength at 7 days appears to achieve 68%-89% of the 28-day compressive strength, and the printing path has minor effect on the development rate of compressive strength. Based on the test data analyses, an analytical model was proposed to describe the stress-strain relationship of concrete printed by two printing paths.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Impact of Printing Directions and Printing Paths on the Compressive Strength of 3D Printed Concrete
    Thajeel, Marwah M.
    Solyom, Sandor
    Balazs, Gyorgy L.
    EPITOANYAG-JOURNAL OF SILICATE BASED AND COMPOSITE MATERIALS, 2024, 76 (01): : 31 - 38
  • [2] Differences between 3D printed concrete and 3D printing reinforced concrete technologies: a review
    Momeni, Komeil
    Vatin, Nikolai Ivanovich
    Hematibahar, Mohammad
    Gebre, Tesfaldet Hadgembes
    FRONTIERS IN BUILT ENVIRONMENT, 2025, 10
  • [3] 3D printing effect on the compressive strength of concrete structures
    Aramburu, A.
    Calderon-Uriszar-Aldaca, I.
    Puente, I.
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 354
  • [4] Novel Compressive Constitutive Model for 3D Printed Concrete
    Galeote, Eduardo
    de la Fuente, Albert
    PROCEEDINGS OF THE 75TH RILEM ANNUAL WEEK 2021, 2023, 40 : 461 - 468
  • [5] Durability of 3D Printed Concrete: A Comparison of Extrusion 3D Printing, Shotcrete 3D Printing and Conventional Casting
    Boehler, David
    Mai, Inka
    Lowke, Dirk
    FOURTH RILEM INTERNATIONAL CONFERENCE ON CONCRETE AND DIGITAL FABRICATION, DC 2024, 2024, 53 : 283 - 290
  • [6] 3D Vision in 3D Concrete Printing
    Sokolov, Dmitrii
    Mechtcherine, Viktor
    FOURTH RILEM INTERNATIONAL CONFERENCE ON CONCRETE AND DIGITAL FABRICATION, DC 2024, 2024, 53 : 182 - 189
  • [7] 3D concrete printing: review
    Nehme, Salem
    Abeidi, Ayman
    EPITOANYAG-JOURNAL OF SILICATE BASED AND COMPOSITE MATERIALS, 2022, 74 (05): : 183 - 187
  • [8] 3D Printing Concrete with Reinforcement
    Bos, Freek P.
    Ahmed, Zeeshan Y.
    Wolfs, Rob J. M.
    Salet, Theo A. M.
    HIGH TECH CONCRETE: WHERE TECHNOLOGY AND ENGINEERING MEET, 2018, : 2484 - 2493
  • [9] Effect of Strain Rate on Dynamic Compressive Properties of 3D Printing Concrete
    Wang H.
    Tao A.
    Sun X.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (05): : 1499 - 1507
  • [10] ON THE 3D PRINTING OF REINFORCED CONCRETE
    Allameh, Seyed M.
    Lenihan, Avery
    Kota, Dhruv
    Allameh, Hadi
    Miller, Roger
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 4, 2023,