Predicting type 2 diabetes risk before and after solid organ transplantation using polygenic scores in a Danish cohort

被引:1
|
作者
dos Santos, Quenia [1 ]
Leung, Preston [1 ]
Thorball, Christian W. [2 ,3 ,4 ]
Ledergerber, Bruno [1 ]
Fellay, Jacques [2 ,3 ,4 ]
MacPherson, Cameron R. [1 ,5 ]
Hornum, Mads [6 ]
Terrones-Campos, Cynthia [1 ]
Rasmussen, Allan [7 ]
Gustafsson, Finn [8 ,9 ]
Perch, Michael [8 ,9 ]
Sorensen, Soren S. [6 ]
Ekenberg, Christina [1 ]
Lundgren, Jens D. [1 ]
Feldt-Rasmussen, Bo [6 ]
Reekie, Joanne [1 ]
机构
[1] Univ Copenhagen, Inst Roche Immun & Infect CHIP, Ctr Excellence Hlth, Rigshosp, Copenhagen, Denmark
[2] Lausanne Univ Hosp, Univ Lausanne, Lausanne, Switzerland
[3] Univ Lausanne, Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Sch Life Sci, Lausanne, Switzerland
[5] Inst Roche, Boulogne Billancourt, France
[6] Rigshosp, Dept Nephrol, Copenhagen Univ Hosp, Copenhagen, Denmark
[7] Rigshosp, Rigshospitalet, Copenhagen, Denmark
[8] Rigshosp, Dept Cardiol, Copenhagen, Denmark
[9] Univ Copenhagen, Fac Hlth & Med Sci, Dept Clin Med, Copenhagen, Denmark
基金
新加坡国家研究基金会;
关键词
type 2 diabetes mellitus; transplant; post-transplant diabetes mellitus; solid organ transplant recipient; polygenic risk score; MELLITUS; VARIANTS; IMPACT;
D O I
10.3389/fmolb.2023.1282412
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Type 2 diabetes mellitus (T2DM) can be multifactorial where both genetics and environmental factors play a role. We aimed to investigate the use of polygenic risk scores (PRS) in the prediction of pre-transplant T2DM and post-transplant diabetes mellitus (PTDM) among solid organ transplant (SOT) patients. Using non-genetic risk scores alone; and the combination with PRS, separate logistic regression models were built and compared using receiver operator curves. Patients were assessed pre-transplant and in three post-transplant periods: 0-45, 46-365 and >365 days. A higher PRS was significantly associated with increased odds of pre-transplant T2DM. However, no improvement was observed for pre-transplant T2DM prediction when comparing PRS combined with non-genetic risk scores to using non-genetic risk scores alone. This was also true for predictions of PTDM in all three post-transplant periods. This study demonstrated that polygenic risk was only associated with the risk of T2DM among SOT recipients prior to transplant and not for PTDM. Combining PRS with a clinical model of non-genetic risk scores did not significantly improve the predictive ability, indicating its limited clinical utility in identifying patients at high risk for T2DM before transplantation, suggesting that non-genetic or different genetic factors may contribute to PTDM.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Predicting Pancreatic Cancer in the UK Biobank Cohort Using Polygenic Risk Scores and Diabetes Mellitus
    Sharma, Shreya
    Tapper, William J.
    Collins, Andrew
    Hamady, Zaed Z. R.
    GASTROENTEROLOGY, 2022, 162 (06) : 1665 - +
  • [2] Polygenic Risk Scores in Type 2 Diabetes and Depression
    Kan, Carol
    Euesden, Jack
    Mccarthy, Mark I.
    Breen, Gerome
    Ismail, Khalida
    Lewis, Cathryn M.
    DIABETES, 2015, 64 : A462 - A462
  • [3] Polygenic scores, diet quality, and type 2 diabetes risk
    Merino, J.
    Guasch-Ferre, M.
    Li, J.
    Chung, W.
    Ma, B.
    Liang, L.
    Hu, F. B.
    Florez, J. C.
    DIABETOLOGIA, 2020, 63 (SUPPL 1) : S56 - S57
  • [4] Polygenic risk scores for cardiovascular diseases and type 2 diabetes
    Wong, Chi Kuen
    Makalic, Enes
    Dite, Gillian S.
    Whiting, Lawrence
    Murphy, Nicholas M.
    Hopper, John L.
    Allman, Richard
    PLOS ONE, 2022, 17 (12):
  • [5] Risk scores for predicting type 2 diabetes: using the optimal tool
    Alssema, M.
    Vistisen, D.
    Heymans, M. W.
    Nijpels, G.
    Glumer, C.
    Zimmet, P. Z.
    Shaw, J. E.
    Eliasson, M.
    Stehouwer, C. D. A.
    Tabak, A. G.
    Colagiuri, S.
    Borch-Johnsen, K.
    Dekker, J. M.
    DIABETOLOGIA, 2011, 54 (09) : 2468 - 2470
  • [6] Risk scores for predicting type 2 diabetes: using the optimal tool
    M. Alssema
    D. Vistisen
    M. W. Heymans
    G. Nijpels
    C. Glümer
    P. Z. Zimmet
    J. E. Shaw
    M. Eliasson
    C. D. A. Stehouwer
    A. G. Tabák
    S. Colagiuri
    K. Borch-Johnsen
    J. M. Dekker
    Diabetologia, 2011, 54 : 2468 - 2470
  • [7] Systematic Review of Polygenic Risk Scores for Type 1 and Type 2 Diabetes
    Padilla-Martinez, Felipe
    Collin, Francois
    Kwasniewski, Miroslaw
    Kretowski, Adam
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (05)
  • [8] Comparisons of Polyexposure, Polygenic, and Clinical Risk Scores in Risk Prediction of Type 2 Diabetes
    He, Yixuan
    Lakhani, Chirag M.
    Rasooly, Danielle
    Manrai, Arjun K.
    Tzoulaki, Ioanna
    Patel, Chirag J.
    DIABETES CARE, 2021, 44 (04) : 935 - 943
  • [9] Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes
    Shoaib, Muhammad
    Ye, Qiang
    IglayReger, Heidi
    Tan, Meng H.
    Boehnke, Michael
    Burant, Charles F.
    Soleimanpour, Scott A.
    Taliun, Sarah A. Gagliano A.
    GENETIC EPIDEMIOLOGY, 2023, 47 (04) : 303 - 313
  • [10] Risk of Staphylococcus aureus Bacteremia Before and After Solid Organ Transplantation
    Inagaki, Kengo
    Weinberg, Jason B.
    Kaul, Daniel R.
    TRANSPLANTATION, 2023, 107 (08) : 1820 - 1827