A Workflow for Accelerating Multimodal Data Collection for Electrodeposited Films

被引:6
|
作者
Bassett, Kimberly L. [1 ]
Watkins, Tylan [2 ]
Coleman, Jonathan [2 ]
Bianco, Nathan [1 ]
Bailey, Lauren S. [2 ]
Pillars, Jamin [2 ]
Williams, Samuel Garrett [2 ]
Babuska, Tomas F. [2 ]
Curry, John [2 ]
DelRio, Frank W. [1 ]
Henriksen, Amelia A. [2 ]
Garland, Anthony [1 ]
Hall, Justin [2 ]
Krick, Brandon A. [3 ]
Boyce, Brad L. [1 ]
机构
[1] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA
[2] Sandia Natl Labs, Albuquerque, NM USA
[3] Florida State Univ, Tallahassee, FL USA
关键词
High throughput; Materials characterization; Materials synthesis; Machine learning; Automation; Process optimization; CRYSTAL-STRUCTURES; COMBINATORIAL; NANOINDENTATION; OPTIMIZATION; LIBRARIES; SUPPORT; SYSTEM;
D O I
10.1007/s40192-023-00315-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Future machine learning strategies for materials process optimization will likely replace human capital-intensive artisan research with autonomous and/or accelerated approaches. Such automation enables accelerated multimodal characterization that simultaneously minimizes human errors, lowers costs, enhances statistical sampling, and allows scientists to allocate their time to critical thinking instead of repetitive manual tasks. Previous acceleration efforts to synthesize and evaluate materials have often employed elaborate robotic self-driving laboratories or used specialized strategies that are difficult to generalize. Herein we describe an implemented workflow for accelerating the multimodal characterization of a combinatorial set of 915 electroplated Ni and Ni-Fe thin films resulting in a data cube with over 160,000 individual data files. Our acceleration strategies do not require manufacturing-scale resources and are thus amenable to typical materials research facilities in academic, government, or commercial laboratories. The workflow demonstrated the acceleration of six characterization modalities: optical microscopy, laser profilometry, X-ray diffraction, X-ray fluorescence, nanoindentation, and tribological (friction and wear) testing, each with speedup factors ranging from 13-46x. In addition, automated data upload to a repository using FAIR data principles was accelerated by 64x.
引用
收藏
页码:430 / 440
页数:11
相关论文
共 50 条
  • [1] A Workflow for Accelerating Multimodal Data Collection for Electrodeposited Films
    Kimberly L. Bassett
    Tylan Watkins
    Jonathan Coleman
    Nathan Bianco
    Lauren S. Bailey
    Jamin Pillars
    Samuel Garrett Williams
    Tomas F. Babuska
    John Curry
    Frank W. DelRio
    Amelia A. Henriksen
    Anthony Garland
    Justin Hall
    Brandon A. Krick
    Brad L. Boyce
    Integrating Materials and Manufacturing Innovation, 2023, 12 : 430 - 440
  • [2] Workflow Support for Mobile Data Collection
    Wakholi, Peter
    Chen, Weiqin
    Klungsoyr, Jorn
    ENTERPRISE, BUSINESS-PROCESS AND INFORMATION SYSTEMS MODELING, 2011, 81 : 299 - 313
  • [3] A Mobile Data Collection Tool for Workflow Analysis
    Moss, Jacqueline
    Berner, Eta S.
    Savell, Kathy
    MEDINFO 2007: PROCEEDINGS OF THE 12TH WORLD CONGRESS ON HEALTH (MEDICAL) INFORMATICS, PTS 1 AND 2: BUILDING SUSTAINABLE HEALTH SYSTEMS, 2007, 129 : 48 - +
  • [4] Accelerating Science Impact through Big Data Workflow Management and Supercomputing
    De, K.
    Klimentov, A.
    Maeno, T.
    Mashinistov, R.
    Nilsson, P.
    Oleynik, D.
    Panitkin, S.
    Ryabinkin, E.
    Wenaus, T.
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS (MMCP 2015), 2016, 108
  • [5] Accelerating Preclinical Imaging Workflow
    Arcot, Santosh S.
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2009, 29 (08): : 28 - 29
  • [6] Improving data collection, documentation, and workflow in a dementia screening study
    Read, Kevin B.
    LaPolla, Fred Willie Zametkin
    Tolea, Magdalena I.
    Galvin, James E.
    Surkis, Alisa
    JOURNAL OF THE MEDICAL LIBRARY ASSOCIATION, 2017, 105 (02) : 160 - 166
  • [7] An Active Workflow Method for Entity-Oriented Data Collection
    Guo, Gaoyang
    ADVANCES IN CONCEPTUAL MODELING, ER 2018, 2019, 11158 : 76 - 81
  • [8] A Framework for Multimodal Data Collection, Visualization, Annotation and Learning
    Thompson, Anne Loomis
    Bohus, Dan
    ICMI'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2013, : 67 - 68
  • [9] Multimodal Data Collection Framework for Mental Stress Monitoring
    Kye, Saewon
    Moon, Junhyung
    Lee, Juneil
    Choi, Inho
    Cheon, Dongmi
    Lee, Kyoungwoo
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS (UBICOMP/ISWC '17 ADJUNCT), 2017, : 822 - 829
  • [10] Data collection and processing for a multimodal Learning Analytic System
    Ruffaldi, Emanuele
    Dabisias, Giacomo
    Landolfi, Lorenzo
    Spikol, Daniel
    PROCEEDINGS OF THE 2016 SAI COMPUTING CONFERENCE (SAI), 2016, : 858 - 863