Nonparametric relative error estimation of the regression function for left truncated and right censored time series data

被引:1
|
作者
Bayarassou, N. [1 ]
Hamrani, F. [1 ]
Said, E. Ould [2 ,3 ]
机构
[1] USTHB, Fac Math, Lab MSTD, Algiers, Algeria
[2] Univ Littoral Cote dOpale, LMPA, Calais, France
[3] ULCO, LMPA, IUT Calais 19,Rue Louis David,BP 699, F-62228 Calais, France
关键词
Kernel estimate; relative error regression; strong mixing condition; strong uniform convergence; truncated-censored data; DENSITY-ESTIMATION; PREDICTION; PROBABILITY;
D O I
10.1080/10485252.2023.2241572
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper introduces a nonparametric estimator for the regression function of left truncated and right censored data, achieved through minimising the mean squared relative error. Under & alpha;-mixing condition, strong uniform convergence of the estimator is established with a rate over a compact set. An extensive simulation study is conducted to assess the estimator's performance, comparing its efficiency to that of the classical regression estimator for finite samples across various scenarios. Moreover, a real world application is presented to demonstrate the practical utility of the proposed estimator.
引用
收藏
页码:706 / 729
页数:24
相关论文
共 50 条