A Novel Fault Diagnosis Method of Rolling Bearings Combining Convolutional Neural Network and Transformer

被引:9
|
作者
Liu, Wenkai [1 ,2 ]
Zhang, Zhigang [1 ,2 ]
Zhang, Jiarui [1 ,2 ]
Huang, Haixiang [1 ,2 ]
Zhang, Guocheng [1 ,2 ]
Peng, Mingda [1 ,2 ]
机构
[1] South China Agr Univ, Coll Engn, Guangzhou 510642, Peoples R China
[2] South China Agr Univ, Minist Educ China Key Technol Agr Machine & Equipm, Key Lab, Guangzhou 510642, Peoples R China
关键词
intelligent fault diagnosis; deep learning; transformer; convolutional neural networks; rolling bearings; ELEMENT BEARINGS;
D O I
10.3390/electronics12081838
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Efficient and accurate fault diagnosis plays an essential role in the safe operation of machinery. In respect of fault diagnosis, various data-driven methods based on deep learning have attracted widespread attention for research in recent years. Considering the limitations of feature representation in convolutional structures for fault diagnosis, and the demanding requirements on the quality of data for Transformer structures, an intelligent method of fault diagnosis is proposed in the present study for bearings, namely Efficient Convolutional Transformer (ECTN). Firstly, the time-frequency representation is achieved by means of short-time Fourier transform for the original signal. Secondly, the low-level local features are extracted using an efficient convolution module. Then, the global information is extracted through transformer. Finally, the results of fault diagnosis are obtained by the classifier. Moreover, experiments are conducted on two different bearing datasets to obtain the experimental results showing that the proposed method is effective in combining the advantages of CNN and transformer. In comparison with other single-structure methods of fault diagnosis, the method proposed in this study produces a better diagnostic performance in the context of limited data volume, strong noise, and variable operating conditions.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Robust Fault Diagnosis Method for Rolling Bearings Based on Deep Convolutional Neural Network
    Li, Zhenxiang
    Zheng, Taisheng
    Yang, Wang
    Fu, Hongyong
    Wu, Wenbo
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [2] New method for the fault diagnosis of rolling bearings based on a multiscale convolutional neural network
    Xu, Zifei
    Jin, Jiangtao
    Li, Chun
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (18): : 212 - 220
  • [3] A novel convolutional neural network with multiscale cascade midpoint residual for fault diagnosis of rolling bearings
    Chao, Zhiqiang
    Han, Tian
    Neurocomputing, 2022, 506 : 213 - 227
  • [4] A novel convolutional neural network with multiscale cascade midpoint residual for fault diagnosis of rolling bearings
    Chao, Zhiqiang
    Han, Tian
    NEUROCOMPUTING, 2022, 506 : 213 - 227
  • [5] An acoustic fault diagnosis method of rolling bearings based on acoustic imaging and convolutional neural network
    Wang R.
    Shi R.
    Hu S.
    Lu W.
    Hu X.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (16): : 224 - 231
  • [6] Physics-Based Convolutional Neural Network for Fault Diagnosis of Rolling Element Bearings
    Sadoughi, Mohammadkazem
    Hu, Chao
    IEEE SENSORS JOURNAL, 2019, 19 (11) : 4181 - 4192
  • [7] A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset
    Tang, Hongtao
    Gao, Shengbo
    Wang, Lei
    Li, Xixing
    Li, Bing
    Pang, Shibao
    SENSORS, 2021, 21 (20)
  • [8] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713
  • [9] Fault diagnosis of rolling bearings based on a multi branch depth separable convolutional neural network
    Liu H.
    Yao D.
    Yang J.
    Zhang J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (10): : 95 - 102
  • [10] Application of Multi-Dimension Input Convolutional Neural Network in Fault Diagnosis of Rolling Bearings
    Zan, Tao
    Wang, Hui
    Wang, Min
    Liu, Zhihao
    Gao, Xiangsheng
    APPLIED SCIENCES-BASEL, 2019, 9 (13):