A molecular dynamics study on nanobubble formation and dynamics via methane hydrate dissociation

被引:5
|
作者
Lu, Yi [1 ]
Feng, Yu [1 ]
Guan, Dawei [1 ]
Lv, Xin [2 ]
Li, Qingping [2 ]
Zhang, Lunxiang [1 ]
Zhao, Jiafei [1 ]
Yang, Lei [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
[2] State Key Lab Nat Gas Hydrate, Beijing 100028, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Nanobubble; Gas hydrate; Kinetics; Molecular dynamics simulation; GAS-HYDRATE; NANO-BUBBLES; NUCLEATION; WATER; STABILITY; SURFACE; TRANSITION; KINETICS; SYSTEM;
D O I
10.1016/j.fuel.2023.127650
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The formation condition of nanobubbles and its effect on the methane hydrate dissociation were studied using molecular dynamics (MD) simulations. To investigate the effect of liquid water proportion on the methane hy-drate dissociation path and nanobubble formation conditions, two different initial configurations were built. Considering low liquid water proportion simulation, four main dissociation stages were identified, and nano-bubbles formed when the methane supersaturation condition was met. During this period, hydrate dissociation rate decreases and fluctuates around zero, indicating that mass transfer limitation forms and hydrate cages undergo a long-term disappearance and rebuilding process. Nanobubbles can form in two distinct regions: the liquid water region and the final hydrate slice region. Hydrate dissociation rate increased after the first nano-bubble formed, which broke the mass transfer limitation. Small nanobubbles formed at the end of the hydrate dissociation process also contributed to the final hydrate slice collapsing by shortening the diffusion distance of methane molecules to the gas phase. At the end of the simulation, only one nanobubble survived in the system with a mole percent of methane in water for two systems remaining at 0.4 and 0.9, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Molecular dynamics study on the dissociation of methane hydrate via inorganic salts
    Xu, Jiafang
    Gu, Tiantian
    Sun, Zening
    Li, Xiaodi
    Wang, Xiaopu
    MOLECULAR PHYSICS, 2016, 114 (01) : 34 - 43
  • [2] Molecular insights into methane hydrate dissociation: Role of methane nanobubble formation
    Moorjani, Bhavesh
    Adhikari, Jhumpa
    Hait, Samik
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (10):
  • [3] Effect of Bubble Formation on the Dissociation of Methane Hydrate in Water: A Molecular Dynamics Study
    Yagasaki, Takuma
    Matsumoto, Masakazu
    Andoh, Yoshimichi
    Okazaki, Susumu
    Tanaka, Hideki
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (07): : 1900 - 1906
  • [4] Molecular dynamics study of methane hydrate formation at a water/methane interface
    Zhang, Junfang
    Hawtin, R. W.
    Yang, Ye
    Nakagava, Edson
    Rivero, M.
    Choi, S. K.
    Rodger, P. M.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (34): : 10608 - 10618
  • [5] Effects of thermodynamic inhibitors on the dissociation of methane hydrate: a molecular dynamics study
    Yagasaki, Takuma
    Matsumoto, Masakazu
    Tanaka, Hideki
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (48) : 32347 - 32357
  • [6] Molecular dynamics study of thermal-driven methane hydrate dissociation
    English, Niall J.
    Phelan, Grainne M.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (07):
  • [7] Molecular dynamics simulation of methane hydrate dissociation by depressurisation
    Yan, KeFeng
    Li, XiaoSen
    Chen, ZhaoYang
    Li, Bo
    Xu, ChunGang
    MOLECULAR SIMULATION, 2013, 39 (04) : 251 - 260
  • [8] Molecular dynamics simulation of dissociation process for methane hydrate
    Yasuoka, K
    Murakoshi, S
    GAS HYDRATES: CHALLENGES FOR THE FUTURE, 2000, 912 : 678 - 684
  • [9] Molecular-dynamics simulations of methane hydrate dissociation
    English, NJ
    Johnson, JK
    Taylor, CE
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (24):
  • [10] Properties of inhibitors of methane hydrate formation via molecular dynamics simulations
    Anderson, BJ
    Tester, JW
    Borghi, GP
    Trout, BL
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (50) : 17852 - 17862