Study on indoor adaptive thermal comfort evaluation method for buildings integrated with semi-transparent photovoltaic window

被引:10
|
作者
Wang, Haobo [1 ]
Lin, Chengkai [1 ,2 ]
Hu, Yilin [1 ]
Zhang, Xingkui [3 ]
Han, Jun [4 ]
Cheng, Yuanda [1 ]
机构
[1] Taiyuan Univ Technol, Coll Civil Engn, Taiyuan, Peoples R China
[2] Hunan Univ, Coll Architecture & Planning, Changsha, Peoples R China
[3] Shanxi Construct Engn Grp Co Ltd, Taiyuan, Peoples R China
[4] Heriot Watt Univ, Sch Built Environm, Dubai, U Arab Emirates
关键词
Semi-transparent photovoltaic window; Visual and non-visual coupling effect; Adaptive thermal comfort; BRIGHT-LIGHT EXPOSURE; ENERGY PERFORMANCE; DAYLIGHT; REGIONS;
D O I
10.1016/j.buildenv.2022.109834
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Semi-Transparent Photovoltaic (STPV) windows have the potential of active energy-saving and have attracted more attention in recent years. Due to the selective absorption effect of solar cells on solar radiation, the indoor thermal environment and human thermal comfort of buildings integrated with STPV windows are considerably different from that with clear glass windows, and there are few studies on this. In this paper, the indoor human thermal comfort of buildings integrated with STPV window was investigated. Firstly, experiments and subjective questionnaires for the indoor environment were conducted in STPV and clear glass window buildings respectively. Secondly, the influence of illuminance on thermal sensation was statistically analyzed, with the consideration of visual effect, non-visual effect, as well as visual and non-visual coupling effect respectively. On this basis, an innovative thermal comfort evaluation method was provided. The thermo-physiological effect, lightphysiological effect and light-psychological effect were comprehensively considered in this method. Finally, the reliability was verified by comparing with TSV. According to tests and questionnaires, it was found that the indoor thermal environment of the STPV window was an uneven thermal environment, and the subjective thermal sensation was more inclined to be slightly warm. When investigating the effect of illuminance on thermal sensation considering visual and non-visual coupling effect, it was found that illuminance had a significant influence on thermal sensation in different illuminance ranges. Meanwhile, it indicated the coupled effect of thermal environment and daylight environment on the thermal comfort of human.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Study on thermal performance of semi-transparent building-integrated photovoltaic glazings
    Fung, Tady Y. Y.
    Yang, H.
    ENERGY AND BUILDINGS, 2008, 40 (03) : 341 - 350
  • [2] Numerical studies of thermal comfort for semi-transparent building integrated photovoltaic (BIPV)-vacuum glazing system
    Ghosh, Aritra
    Sarmah, Nabin
    Sundaram, Senthilarasu
    Mallick, Tapas K.
    SOLAR ENERGY, 2019, 190 : 608 - 616
  • [3] Angular loss of window integrated thin film semi-transparent photovoltaic module
    Barman, Sankar
    Chowdhury, Amartya
    Mathur, Sanjay
    Mathur, Jyotirmay
    JOURNAL OF BUILDING ENGINEERING, 2021, 40
  • [4] Assessment of the efficiency of window integrated CdTe based semi-transparent photovoltaic module
    Barman, Sankar
    Chowdhury, Amartya
    Mathur, Sanjay
    Mathur, Jyotirmay
    SUSTAINABLE CITIES AND SOCIETY, 2018, 37 : 250 - 262
  • [5] Thermal Energy Optimization of Building Integrated Semi-Transparent Photovoltaic Thermal Systems
    Martial, Ekoe A. Akata Aloys
    Njomo, Donatien
    Agrawal, Basant
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2015, 4 (02): : 113 - 123
  • [6] Semi-transparent Photovoltaic Devices for Smart Window Applications
    Kim, Soo
    Huang, Yu Nung
    Ameena, F.
    Hoffman, David W.
    Jin, Michael H. -C.
    Banger, Kulbinder K.
    Scheiman, David A.
    McMillon, Lyndsey B.
    McNatt, Jeremiah S.
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012, : 2807 - 2810
  • [7] Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells
    Chae, Young Tae
    Kim, Jeehwan
    Park, Hongsik
    Shin, Byungha
    APPLIED ENERGY, 2014, 129 : 217 - 227
  • [8] Thermal Analysis and Performance of Double Glazing Window with Semi-transparent Photovoltaic Module
    Othman, Mohd Yusof Hj
    Zaidi, Saleem H.
    Sopian, Kamaruzzaman
    Jelita, Marhama
    SAINS MALAYSIANA, 2014, 43 (04): : 575 - 582
  • [9] Performance evaluation of 7.2 kWp standalone building integrated semi-transparent photovoltaic thermal system
    Mishra, G. K.
    Tiwari, G. N.
    RENEWABLE ENERGY, 2020, 146 : 205 - 222
  • [10] Energy and cost analysis of semi-transparent photovoltaic in office buildings
    Li, Danny H. W.
    Lam, Tony N. T.
    Chan, Wilco W. H.
    Mak, Ada H. L.
    APPLIED ENERGY, 2009, 86 (05) : 722 - 729