Zwitterion Reduces Open-Circuit Voltage Loss in Wide-Bandgap Perovskite Solar Cells with 22% Efficiency and Its Application in Tandem Devices

被引:1
|
作者
Han, Xiaojing [1 ,2 ,3 ,4 ,5 ]
Wang, Jin [1 ,2 ,3 ,4 ,5 ]
Jin, Lu [1 ,2 ,3 ,4 ,5 ]
Wang, Pengyang [1 ,2 ,3 ,4 ,5 ]
Shi, Biao [1 ,2 ,3 ,4 ,5 ]
Zhao, Ying [1 ,2 ,3 ,4 ,5 ]
Zhang, Xiaodan [1 ,2 ,3 ,4 ,5 ]
机构
[1] Nankai Univ, Inst Photoelect Thin Film Devices & Technol, Renewable Energy Convers & Storage Ctr, Solar Energy Convers Ctr, Tianjin 300350, Peoples R China
[2] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[3] Thin Film Devices & Technol Tianjin, Key Lab Photoelect, Tianjin 300350, Peoples R China
[4] Minist Educ, Engn Res Ctr Thin Film Photoelect Technol, Tianjin 300350, Peoples R China
[5] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
defects; nonradiative recombinations; open-circuit voltage losses; perovskite/silicon tandem solar cells; zwitterions; DEFECT PASSIVATION; INTERFACE; PERFORMANCE;
D O I
10.1002/solr.202300648
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wide-bandgap (WBG) perovskite solar cells (PSCs) can be combined with other narrow-bandgap cells to form tandem solar cells (TSCs), which have excellent commercialization prospects. However, the component of WBG perovskite is complex, and the crystallization process is difficult to control. Various bulk and surface defects in polycrystalline films lead to severe nonradiative recombination of photo generated carriers, resulting in severe open-circuit voltage (V-OC) loss in WBG PSCs. Herein, a zwitterionic additive is introduced to alleviate the V-OC deficit. The sulfinyl group (-S(sic)O) in formamidine sulfinic acid (FSA) has a robust interaction with Pb2+, which retards the crystallization and improves the crystal quality in perovskite films. Furthermore, FSA has negatively charged centers (-SO2-) and positively charged centers (-C(NH2)(2)(+)), which can passivate the halogen and cation vacancies, respectively. The improved crystalline quality and passivated defects reduce the capture of carriers by defects and facilitate higher V-OC. With this strategy, the 1.68 eV bandgap PSCs achieve a champion efficiency of 22.06% and a high V-OC of 1.25 V (V-OC loss = 0.43 V). Moreover, the 2-terminal perovskite/silicon TSCs are fabricated with an extraordinary power conversion efficiency of 28.81%.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A review: strategies for reducing the open-circuit voltage loss of wide-bandgap perovskite solar cells
    Chen, Lu-Yao
    Sun, Qi
    Xie, Yue-Min
    Fung, Man-Keung
    CHEMICAL COMMUNICATIONS, 2025, 61 (06) : 1063 - 1086
  • [2] Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction
    Chen, Cong
    Song, Zhaoning
    Xiao, Chuanxiao
    Zhao, Dewei
    Shrestha, Niraj
    Li, Chongwen
    Yang, Guang
    Yao, Fang
    Zheng, Xiaolu
    Ellingson, Randy J.
    Jiang, Chun-Sheng
    Al-Jassim, Mowafak
    Zhu, Kai
    Fang, Guojia
    Yan, Yanfa
    NANO ENERGY, 2019, 61 : 141 - 147
  • [3] Open-Circuit Voltage Loss Management for Efficient Inverted Wide-Bandgap Perovskite Photovoltaics
    Li, Yifan
    Yang, Shaopeng
    Yan, Shan
    Liu, Xiaoyu
    Shi, Guodong
    He, Tingwei
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (07)
  • [4] Additive engineering for efficient wide-bandgap perovskite solar cells with low open-circuit voltage losses
    Yu, Xixi
    He, Huxue
    Hui, Yunuo
    Wang, Hua
    Zhu, Xing
    Li, Shaoyuan
    Zhu, Tao
    FRONTIERS IN CHEMISTRY, 2024, 12
  • [5] Efficiency Exceeding 11% in Tandem Polymer Solar Cells Employing High Open-Circuit Voltage Wide-Bandgap π-Conjugated Polymers
    Song, Seyeong
    Kranthiraja, Kakaraparthi
    Heo, Jungwoo
    Kim, Taehyo
    Walker, Bright
    Jin, Sung-Ho
    Kim, Jin Young
    ADVANCED ENERGY MATERIALS, 2017, 7 (21)
  • [6] High Open-Circuit Voltage Wide-Bandgap Perovskite Solar Cell with Interface Dipole Layer
    Heo, Jihyeon
    Prayogo, Juan Anthony
    Lee, Seok Woo
    Park, Hansol
    Muthu, Senthilkumar
    Hong, Jeehee
    Kim, Haeun
    Kim, Young-Hoon
    Whang, Dong Ryeol
    Chang, Dong Wook
    Park, Hui Joon
    SMALL, 2024,
  • [7] Regulating the Crystallization Process of Intermediate Phase for Wide-Bandgap Perovskite Reduces Open-Circuit Voltage Deficit
    Han, Lin
    Feng, Xiaopeng
    Shao, Zhipeng
    Wu, Guohua
    Bi, Chenghao
    Huang, Xuexuan
    Du, Xiaofan
    Meng, Qichao
    Han, Yaliang
    Lyu, Luyao
    Liu, Rongxiu
    Cui, Changcheng
    Li, Yimeng
    Wei, Hao
    Wu, Zucheng
    Lu, Boyang
    Zhang, Yaohong
    Pang, Shuping
    Cui, Guanglei
    ACS ENERGY LETTERS, 2025, 10 (03): : 1321 - 1329
  • [8] Wide-Bandgap Perovskite Solar Cells With Large Open-Circuit Voltage of 1653mV Through Interfacial Engineering
    Hu, Xiaowen
    Jiang, Xiao-Fang
    Xing, Xiaobo
    Nian, Li
    Liu, Xiaoyang
    Huang, Rong
    Wang, Kai
    Yip, Hin-Lap
    Zhou, Guofu
    SOLAR RRL, 2018, 2 (08):
  • [9] Additive Combining Passivator for Inverted Wide-Bandgap Perovskite Solar Cells with 22% Efficiency and Reduced Voltage Loss
    Gan, Yu
    Hao, Xia
    Li, Wei
    Zhang, Jingquan
    Wu, Lili
    SOLAR RRL, 2023, 7 (24)
  • [10] Minimizing Voltage Loss in Wide-Bandgap Perovskites for Tandem Solar Cells
    Jaysankar, Manoj
    Raul, Benedito A. L.
    Bastos, Joao
    Burgess, Claire
    Weijtens, Christ
    Creatore, Mariadriana
    Aernouts, Tom
    Kuang, Yinghuan
    Gehlhaar, Robert
    Hadipour, Afshin
    Poortmans, Jef
    ACS ENERGY LETTERS, 2019, 4 (01): : 259 - 264