Self-healing capability of engineered cementitious composites with calcium aluminate cement

被引:3
|
作者
Zokaei, Shahin [1 ]
Siad, Hocine [1 ]
Lachemi, Mohamed [1 ]
Mahmoodi, Obaid [1 ]
Sahmaran, Mustafa [2 ]
机构
[1] Toronto Metropolitan Univ, Dept Civil Engn, Toronto, ON, Canada
[2] Hacettepe Univ, Dept Civil Engn, Ankara, Turkiye
关键词
Calcium aluminate cement; Engineered cementitious composites; Sustainability; Self-healing; Conversion; Cracking; FLY-ASH; MECHANICAL-PROPERTIES; CORROSION; RESISTANCE; STEEL; ECC;
D O I
10.1016/j.conbuildmat.2023.133051
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The reduced heating temperatures required for producing calcium aluminate cement (CAC) make it highly suitable for reducing CO2 emissions in engineered cementitious composites (ECCs) known with their significant amount of cement. However, it is not clear to what extent this can influence the advanced mechanical and selfhealing ability of control ECC, especially with the risk of conversion in CAC reaction products. This study investigates the self-healing capability of ECCs produced using CAC instead of conventional ordinary Portland cement (OPC). It also assesses the impact of incorporating fly ash (FA) into CAC-ECC blends at different FA/CAC ratios. In addition to the mechanical characterisation of sound specimens, flexural properties, cracking behavior, ultra-sonic pulse velocity (UPV) and rapid chloride permeability test (RCPT) were performed on preloaded OPCand CAC-ECCs. The study also analyzed the microstructural changes of self-healing products associated with the high alumina content of CAC. The results show that CAC can be used to produce high mechanical strengths ECCs, with more than 34% and 7% higher compressive and flexural strengths respectively than those of ECC-CTL at early age, though the addition of FA was important to reach improved patterns of mechanical properties at advanced ages. In addition, significant improvements were recorded for the recovery rates of CAC-ECCs, reaching more than 29% for flexural strengths, 11% for UPV and 75% for RCPT than the ECC-CTL. The selfhealing products characterized with SEM-EDS confirmed the occurrence of conversion when FA was not included in CAC-ECCs, nevertheless with limited effect on the self-healing efficiency of these mixtures.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Self-healing capability of large-scale engineered cementitious composites beams
    Keskin, Suleyman Bahadir
    Keskin, Ozlem Kasap
    Anil, Ozgur
    Sahmaran, Mustafa
    Alyousif, Ahmed
    Lachemi, Mohamed
    Amleh, Lamya
    Ashour, Ashraf F.
    COMPOSITES PART B-ENGINEERING, 2016, 101 : 1 - 13
  • [2] Mechanical and self-healing properties of calcium-sulfoaluminate-cement-based engineered cementitious composites (ECC)
    Zhang, Zhigang
    Yu, Jianqiao
    Qin, Fengjiang
    Huang, Yubin
    Sun, Feng
    JOURNAL OF BUILDING ENGINEERING, 2023, 77
  • [3] Self-Healing Capability of Fibre Reinforced Cementitious Composites
    Homma, Daisuke
    Mihashi, Hirozo
    Nishiwaki, Tomoya
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2009, 7 (02) : 217 - 228
  • [4] Self-healing of Engineered Cementitious Composites in the Natural Environment
    Herbert, E. N.
    Li, V. C.
    HIGH PERFORMANCE FIBER REINFORCED CEMENT COMPOSITES 6, 2012, 2 : 155 - 162
  • [5] Repeatability and Pervasiveness of Self-Healing in Engineered Cementitious Composites
    Sahmaran, Mustafa
    Yildirim, Gurkan
    Noori, Rezhin
    Ozbay, Erdogan
    Lachemi, Mohamed
    ACI MATERIALS JOURNAL, 2015, 112 (04) : 513 - 522
  • [6] Review on self-healing of engineered cementitious composites materials
    Kan, Li-Li
    Wang, Ming-Zhi
    Shi, Jian-Wu
    Shi, Hui-Sheng
    Gongneng Cailiao/Journal of Functional Materials, 2015, 46 (05): : 05001 - 05006
  • [7] Self-healing behavior of engineered cementitious composites materials
    Kan, Lili
    Shi, Huisheng
    Zhai, Guangfei
    Ning, Ping
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2011, 39 (04): : 682 - 689
  • [8] A review of intrinsic self-healing capability of engineered cementitious composites: Recovery of transport and mechanical properties
    Yildirim, Gurkan
    Keskin, Ozlem Kasap
    Keskin, Suleyman Bahadir
    Sahmaran, Mustafa
    Lachemi, Mohamed
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 101 : 10 - 21
  • [9] Self-healing of engineered cementitious composites at simulated summer conditions
    Yang Yingzi
    Lepech, M. D.
    Yang Enhua
    Li, V. C.
    RARE METALS, 2007, 26 : 267 - 273
  • [10] Effect of self-healing on fatigue of engineered cementitious composites (ECCs)
    Qiu, Jishen
    Aw-Yong, Wei Li
    Yang, En-Hua
    CEMENT & CONCRETE COMPOSITES, 2018, 94 : 145 - 152