Solvent-free mechanochemical synthesis of organic proton conducting salts incorporating imidazole and dicarboxylic acids

被引:2
|
作者
Zhou, Yating [1 ,2 ]
Koedtruad, Anucha [1 ,2 ]
Tan, Zhenhong [1 ,2 ]
Zhang, Dong [1 ,2 ,3 ]
Bao, Lingxiang [1 ,2 ]
Yue, Yajun [1 ,2 ]
Wu, Jianyuan [1 ,2 ]
Xu, Juping [1 ,2 ]
Xia, Yuanguang [1 ,2 ]
Yin, Wen [1 ,2 ,3 ]
Avdeev, Maxim [4 ,5 ]
Kan, Wang Hay [1 ,2 ]
Kamiyama, Takashi [1 ,2 ]
Miao, Ping [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[2] Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
[3] Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 100049, Peoples R China
[4] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia
[5] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金;
关键词
Organic salts; Proton conducting; Mechanochemistry; Powder neutron diffraction; Solventless synthesis; Deuteration; POLYMER ELECTROLYTE; ELECTRICAL-CONDUCTIVITY; COCRYSTAL FORMATION; FUEL-CELLS; MEMBRANES; COMPLEXES;
D O I
10.1016/j.cjsc.2023.100059
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Solventless mechanochemical synthesis by manual grinding was applied to grow organic proton conducting salts, imidazole-succinic acid (C3H4N2-HOOC(CH2)2COOH) and imidazole-glutaric acid (C3H4N2-HOOC(CH2)3COOH). This synthesis method induces crystallization and provides the phase-pure compounds. The compounds exhibit different electric conducting behavior and activation energies Ea compared with the reported single crystals obtained from the solution method. The difference in conducting property can be related to intrinsic defects and structural disorder introduced by mechanochemical grinding, indicating that the mechanochemical method bears strong capability for tuning conductivities. Moreover, complete deuteration of the organic salts is achieved by the method. The mechanochemical synthesis of organic salts also holds high potential for the actual industrialized large-scale production.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Solvent-free mechanochemical synthesis of phosphonium salts
    Balema, VP
    Wiench, JW
    Pruski, M
    Pecharsky, VK
    CHEMICAL COMMUNICATIONS, 2002, (07) : 724 - 725
  • [2] Mechanochemical solvent-free synthesis of metal-organic frameworks
    James, Stuart L.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C40 - C40
  • [3] Solvent-free mechanochemical synthesis of diacylfuroxans
    Gu, Zhen-Zhen
    Guo, Feng-Chao
    Zhang, Pu
    Qin, Yu-Jun
    Guo, Zhi-Xin
    TETRAHEDRON LETTERS, 2019, 60 (26) : 1687 - 1690
  • [4] Solvent-Free Mechanochemical Synthesis of Aryl Glycosides
    Patil, Premanand Ramrao
    Kartha, K. P. Ravindranathan
    JOURNAL OF CARBOHYDRATE CHEMISTRY, 2008, 27 (07) : 411 - 419
  • [5] Solvent-free mechanochemical synthesis of glycosylated curcumin
    Sarala, Garikapati
    Kartha, K. P. Ravindranathan
    TRENDS IN CARBOHYDRATE RESEARCH, 2016, 8 (03) : 19 - 28
  • [6] Solvent-free mechanochemical synthesis of dithiophosphonic acids and corresponding nickel(II) complexes
    Ajayi, Tomilola J.
    Pillay, Michael N.
    van Zyl, Werner E.
    PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS, 2017, 192 (11) : 1205 - 1211
  • [7] Mechanochemical Solvent-Free Synthesis of Indenones from Aromatic Carboxylic Acids and Alkynes
    Li, Liang
    Wang, Guan-Wu
    JOURNAL OF ORGANIC CHEMISTRY, 2021, 86 (20): : 14102 - 14112
  • [8] Solvent-free organic synthesis
    Tanaka, K
    Toda, F
    CHEMICAL REVIEWS, 2000, 100 (03) : 1025 - 1074
  • [9] A solvent-free mechanochemical synthesis of polyaromatic hydrocarbon derivatives
    Wang, Cong
    Hill, Malik
    Theard, Brandon
    Mack, James
    RSC ADVANCES, 2019, 9 (48) : 27888 - 27891
  • [10] Solvent-Free Mechanochemical Synthesis of Strongly Luminescent Eu(III) Hybrid Materials Using Tetramethylammonium Salts
    Li, Ziying
    Nakamura, Kazuki
    Kobayashi, Norihisa
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2023, 96 (08) : 816 - 823