Innovations in Deep Learning to Predict Individual Risk and Treatment Outcome

被引:0
|
作者
Langs, Georg [1 ,2 ]
机构
[1] Med Univ Vienna, Machine Learning Med Imaging, Vienna, Austria
[2] Med Univ Vienna, Computat Imaging Res Lab, Dept Biomed Imaging & Image Guided Therapy, Vienna, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1148/radiol.231116
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [1] DEEP LEARNING TO PREDICT DIABETES OUTCOME
    Clements, M.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2023, 25 : A28 - A28
  • [2] Applying deep learning to predict innovations in small and medium enterprises (SMEs): the dark side of knowledge management risk
    Figueiredo, Ronnie
    Ferreira, Joao J.
    Emilia, Maria
    Dorokhov, Oleksandr
    VINE JOURNAL OF INFORMATION AND KNOWLEDGE MANAGEMENT SYSTEMS, 2023, 53 (05) : 941 - 962
  • [3] Deep Learning to Predict Functional Outcome in Acute Ischemic Stroke
    Lee, Ting-Yim
    RADIOLOGY, 2024, 313 (01)
  • [4] Deep Learning to Predict Outcome in Severe Traumatic Brain Injury COMMENT
    Haller, Sven
    RADIOLOGY, 2022, 304 (02) : 395 - 396
  • [5] Is it possible to predict outcome in an individual patient?
    Troeng, T
    ANNALES CHIRURGIAE ET GYNAECOLOGIAE, 1998, 87 (02) : 126 - 127
  • [6] Machine Learning Can Predict the Individual Risk of Acute Pyelonephritis in Children
    Niel, Olivier
    Francois, Pierre
    Sommelette, Claire
    Kohnen, Michel
    Tsobo, Chantal
    De La Fuente, Isabel
    Biver, Armand
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 616 - 616
  • [7] A deep learning model to predict dose-volume histograms of organs at risk in radiotherapy treatment plans
    Liu, Zhiqiang
    Chen, Xinyuan
    Men, Kuo
    Yi, Junlin
    Dai, Jianrong
    MEDICAL PHYSICS, 2020, 47 (11) : 5467 - 5481
  • [8] Using deep-learning to predict outcome of patients with Parkinson's disease
    Leung, K. H.
    Salmanpour, M. R.
    Saberi, A.
    Klyuzhin, I. S.
    Sossi, V
    Jha, A. K.
    Pomper, M. G.
    Du, Y.
    Rahmim, A.
    2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC), 2018,
  • [9] Deep learning algorithm to predict diabetic retinopathy (DR) progression on the individual patient level
    Arcadu, Filippo
    Benmansour, Fethallah
    Maunz, Andreas
    Willis, Jeffrey
    Prunotto, Marco
    Haskova, Zdenka
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (11)
  • [10] DEEP LEARNING OF RETINAL IMAGING TO PREDICT CARDIOVASCULAR RISK IN PATIENTS WITH DIABETES
    Simo-Servat, O.
    Barriada, R. G.
    Planas, A.
    Hernandez, C.
    Masip, D.
    Simo, R.
    EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2024, 34 (01) : 12 - 12