Common Latent Embedding Space for Cross-Domain Facial Expression Recognition

被引:5
|
作者
Wang, Run [1 ]
Song, Peng [1 ]
Li, Shaokai [1 ]
Ji, Liang [1 ]
Zheng, Wenming [2 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
[2] Southeast Univ, Sch Biol Sci & Med Engn, Key Lab Child Dev & Learning Sci, Minist Educ, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Face recognition; Sparse matrices; Matrix decomposition; Transfer learning; Task analysis; Laplace equations; Domain adaptation; facial expression recognition (FER); latent embedding space; NONNEGATIVE MATRIX FACTORIZATION; POSE;
D O I
10.1109/TCSS.2023.3276990
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In practical facial expression recognition (FER), the training data and test data are often obtained from different domains. It is obvious that the domain disparity could significantly degrade the recognition performance. To tackle this challenging cross-domain FER problem, we put forward a novel method termed common latent embedding space (CLES). To be specific, first, we obtain a common embedding space for cross-domain samples by matrix factorization (MF). Then, the dual-graph Laplacian is applied to this common embedding space to narrow the gap across distinct domains and, meanwhile, explores the inherent geometric information. Furthermore, to characterize the global relationship of the cross-domain samples, the self-representation strategy is used to guide the learning of the common embedding space. Finally, comprehensive experiments on four benchmark databases indicate that the proposed method can achieve better performance in comparison with the state-of-the-art methods on cross-domain FER tasks.
引用
收藏
页码:2046 / 2056
页数:11
相关论文
共 50 条
  • [1] Common Discriminative Latent Space Learning for Cross-Domain Speech Emotion Recognition
    Fu, Siqi
    Song, Peng
    Wang, Hao
    Liu, Zhaowei
    Zheng, Wenming
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024,
  • [2] Discriminative Feature Adaptation for Cross-Domain Facial Expression Recognition
    Zhu, Ronghang
    Sang, Gaoli
    Zhao, Qijun
    2016 INTERNATIONAL CONFERENCE ON BIOMETRICS (ICB), 2016,
  • [3] Cross-Domain Sample Relationship Learning for Facial Expression Recognition
    Chen, Dongliang
    Wen, Guihua
    Wen, Pengcheng
    Yang, Pei
    Chen, Rui
    Li, Cheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3788 - 3798
  • [4] Cross-Domain Facial Expression Recognition via Disentangling Identity Representation
    Liu, Tong
    Li, Jing
    Wu, Jia
    Zhang, Lefei
    Zhao, Shanshan
    Chang, Jun
    Wan, Jun
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1213 - 1221
  • [5] Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition
    Xie, Yuan
    Chen, Tianshui
    Pu, Tao
    Wu, Hefeng
    Lin, Liang
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 1255 - 1264
  • [6] Exploring Domain-Invariant Feature Space for Unsupervised Cross-Domain Facial Expression Recognition via Diffusion Model
    Yang, Yujie
    Zheng, Hanci
    Xu, Yuanyuan
    Zu, Chen
    Wu, Xi
    Zhou, Jiliu
    Wang, Yan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [7] Cross-Domain Knowledge Transfer for Incremental Deep Learning in Facial Expression Recognition
    Sugianto, Nehemia
    Tjondronegoro, Dian
    2019 7TH INTERNATIONAL CONFERENCE ON ROBOT INTELLIGENCE TECHNOLOGY AND APPLICATIONS (RITA), 2019, : 205 - 209
  • [8] Cross-Domain Facial Expression Recognition Based on Transductive Deep Transfer Learning
    Yan, Keyu
    Zheng, Wenming
    Zhang, Tong
    Zong, Yuan
    Tang, Chuangao
    Lu, Cheng
    Cui, Zhen
    IEEE ACCESS, 2019, 7 : 108906 - 108915
  • [9] Augmented Feature Representation with Parallel Convolution for Cross-domain Facial Expression Recognition
    Yang, Fan
    Xie, Weicheng
    Zhong, Tao
    Hu, Jingyu
    Shen, Linlin
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13628 LNCS : 297 - 306
  • [10] Cross-domain Facial Expression Recognition Using Supervised Kernel Mean Matching
    Miao, Yun-Qian
    Araujo, Rodrigo
    Kamel, Mohamed S.
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 2, 2012, : 326 - 332