Phytohormones Mediated Modulation of Abiotic Stress Tolerance and Potential Crosstalk in Horticultural Crops

被引:26
|
作者
Altaf, Muhammad Ahsan [1 ]
Shahid, Rabia [2 ]
Kumar, Ravinder [3 ]
Altaf, Muhammad Mohsin [4 ]
Kumar, Awadhesh [5 ]
Khan, Latif Ullah [6 ]
Saqib, Muhammad [7 ]
Nawaz, Muhammad Azher [8 ]
Saddiq, Bushra [9 ]
Bahadur, Saraj [10 ]
Tiwari, Rahul Kumar [3 ,11 ]
Lal, Milan Kumar [3 ,11 ]
Naz, Safina [7 ]
机构
[1] Hainan Univ, Sch Hort, Haikou 570228, Hainan, Peoples R China
[2] Hainan Univ, Management Sch, Haikou 570228, Hainan, Peoples R China
[3] ICAR Cent Potato Res Inst, Shimla 171001, Himachal Prades, India
[4] Hainan Univ, Coll Ecol & Environm, Haikou 570228, Hainan, Peoples R China
[5] ICAR Natl Rice Res Inst, Cuttack 753006, Odisha, India
[6] Hainan Univ, Coll Trop Crop, Haikou 570228, Hainan, Peoples R China
[7] Bahauddin Zakariya Univ, Dept Hort, Multan 60800, Pakistan
[8] Univ Sargodha, Coll Agr, Dept Hort, Sargodha, Pakistan
[9] Islamia Univ Bahawalpur, Fac Agr & Environm Sci, Bahawalpur 63100, Pakistan
[10] Hainan Univ, Coll Forestry, Haikou 570228, Hainan, Peoples R China
[11] ICAR Indian Agr Res Inst, New Delhi 110012, India
关键词
Abiotic stress; Phytohormone; Horticultural crops; Vegetables; Growth; VITIS-VINIFERA L; ANTIOXIDANT ENZYME-ACTIVITY; INDUCED OXIDATIVE STRESS; REDUCES CHILLING INJURY; ULTRAVIOLET-B RADIATION; AMINOBUTYRIC-ACID GABA; SALICYLIC-ACID; METHYL JASMONATE; ABSCISIC-ACID; SALT STRESS;
D O I
10.1007/s00344-022-10812-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The current status of changing climate has become a significant threat to the global production of horticultural crops. Phytohormones play a crucial role in providing a sophisticated mechanism to circumvent stress at different morphological, physiological, biochemical, and molecular levels. Phytohormone mediates the abiotic stress-responsive signalling pathway and modulates other cell wall repair mechanisms, pH regulations, root hair formation, ionic homeostasis, chlorophyll content, synthesis, and leaf morphology. Auxin, cytokinin, ethylene, strigolactones, brassinosteroid, salicylic acid, abscisic acid, jasmonic acid, and other phytohormones have also had other phytohormones recently been discovered to play a vital role in the production of abiotic stress-tolerant crops. Moreover, recently discovered phytohormone-like plant growth regulators such as polyamines, sugars, neurotransmitters, and strigolactones are an effective strategy to mitigate biotic and abiotic stress. Recent studies revealed the role of different phytohormone-like plant growth regulators and network signalling pathway that targets transcription factors and stress-related genes. Understanding the complex phytohormonal crosstalk in horticultural crops under various abiotic stress conditions will advance the knowledge about the synergistic/antagonistic role of developing stress-tolerant cultivars. Review on modulation of plant growth and development process by regulation of gene expression mediated by different phytohormones in horticultural crops is elusive. In this context, our review focusses on the role of phytohormone-like plant growth regulators and associated crosstalk among each other in plant growth and development under abiotic stress condition.
引用
收藏
页码:4724 / 4750
页数:27
相关论文
共 50 条
  • [1] Phytohormones Mediated Modulation of Abiotic Stress Tolerance and Potential Crosstalk in Horticultural Crops
    Muhammad Ahsan Altaf
    Rabia Shahid
    Ravinder Kumar
    Muhammad Mohsin Altaf
    Awadhesh Kumar
    Latif Ullah Khan
    Muhammad Saqib
    Muhammad Azher Nawaz
    Bushra Saddiq
    Saraj Bahadur
    Rahul Kumar Tiwari
    Milan Kumar Lal
    Safina Naz
    [J]. Journal of Plant Growth Regulation, 2023, 42 : 4724 - 4750
  • [2] Improvement of Horticultural Crops for Abiotic Stress Tolerance
    不详
    [J]. HORTSCIENCE, 2010, 45 (08) : S16 - S16
  • [3] Improvement of Horticultural Crops for Abiotic Stress Tolerance: An Introduction
    Mou, Beiquan
    [J]. HORTSCIENCE, 2011, 46 (08) : 1068 - 1069
  • [4] Antioxidant Potential of Glutathione and Crosstalk with Phytohormones in Enhancing Abiotic Stress Tolerance in Crop Plants
    Rai, Gyanendra Kumar
    Kumar, Pradeep
    Choudhary, Sadiya M. M.
    Singh, Hira
    Adab, Komal
    Kosser, Rafia
    Magotra, Isha
    Kumar, Ranjeet Ranjan
    Singh, Monika
    Sharma, Rajni
    Corrado, Giandomenico
    Rouphael, Youssef
    [J]. PLANTS-BASEL, 2023, 12 (05):
  • [5] Uncovering the mechanisms of salicylic acid-mediated abiotic stress tolerance in horticultural crops
    Yang, Hua
    Fang, Rui
    Luo, Ling
    Yang, Wei
    Huang, Qiong
    Yang, Chunlin
    Hui, Wenkai
    Gong, Wei
    Wang, Jingyan
    [J]. FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [6] Salicylic acid had the potential to enhance tolerance in horticultural crops against abiotic stress
    Chen, Shanshan
    Zhao, Chun-Bo
    Ren, Rui-Min
    Jiang, Jun-Hai
    [J]. FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [7] Phytohormones regulate the abiotic stress: An overview of physiological, biochemical, and molecular responses in horticultural crops
    Zheng, Yi
    Wang, Xiaonan
    Cui, Xin
    Wang, Kefeng
    Wang, Yong
    He, Yuhui
    [J]. FRONTIERS IN PLANT SCIENCE, 2023, 13
  • [8] The complexity of melatonin and other phytohormones crosstalk with other signaling molecules for drought tolerance in horticultural crops
    Sun, Huizhong
    Jia, Mengyuan
    Wang, Yueyang
    Lu, Huanhuan
    Wang, Xiaodong
    [J]. SCIENTIA HORTICULTURAE, 2023, 321
  • [9] Crosstalk of melatonin with major phytohormones and growth regulators in mediating abiotic stress tolerance in plants
    Samanta, Santanu
    Roychoudhury, Aryadeep
    [J]. SOUTH AFRICAN JOURNAL OF BOTANY, 2023, 163 : 201 - 216
  • [10] Melatonin: Discovery, biosynthesis, phytohormones crosstalk, and roles in agricultural crops under abiotic stress conditions
    Jindal, Parnika
    Kant, Krishan
    Kaur, Navneet
    Gupta, Shalu
    Ali, Akbar
    Naeem, M.
    [J]. ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2024, 226