Estimating SARS-CoV-2 seroprevalence

被引:0
|
作者
Rosin, Samuel P. [1 ,3 ]
Shook-Sa, Bonnie E. [1 ]
Cole, Stephen R. [2 ]
Hudgens, Michael G. [1 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC 27516 USA
[2] Univ North Carolina Chapel Hill, Dept Epidemiol, Chapel Hill, NC 27516 USA
[3] George Washington Univ, Biostat Ctr, Dept Biostat & Bioinformat, 6110 Execut Blvd, Rockville, MD 20852 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
COVID-19; diagnostic tests; estimating equations; seroepidemiologic studies; standardization; ESTIMATING PREVALENCE; POSITIVITY;
D O I
10.1093/jrsssa/qnad068
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Governments and public health authorities use seroprevalence studies to guide responses to the COVID-19 pandemic. Seroprevalence surveys estimate the proportion of individuals who have detectable SARS-CoV-2 antibodies. However, serologic assays are prone to misclassification error, and non-probability sampling may induce selection bias. In this paper, non-parametric and parametric seroprevalence estimators are considered that address both challenges by leveraging validation data and assuming equal probabilities of sample inclusion within covariate-defined strata. Both estimators are shown to be consistent and asymptotically normal, and consistent variance estimators are derived. Simulation studies are presented comparing the estimators over a range of scenarios. The methods are used to estimate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence in New York City, Belgium, and North Carolina.
引用
收藏
页码:834 / 851
页数:18
相关论文
共 50 条
  • [1] A Mixture Model for Estimating SARS-CoV-2 Seroprevalence in Chennai, India
    Hitchings, Matt D. T.
    Patel, Eshan U.
    Khan, Rifa
    Srikrishnan, Aylur K.
    Anderson, Mark
    Kumar, K. S.
    Wesolowski, Amy P.
    Iqbal, Syed H.
    Rodgers, Mary A.
    Mehta, Shruti H.
    Cloherty, Gavin
    Cummings, Derek A. T.
    Solomon, Sunil S.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2023, 192 (09) : 1552 - 1561
  • [2] SARS-CoV-2 seroprevalence in Spain
    Georg, Thukalan Paulose
    LANCET, 2020, 396 (10261): : 1484 - 1484
  • [3] The seroprevalence of SARS-CoV-2 in patients on haemodialysis
    Mahalingasivam, Viyaasan
    Tomlinson, Laurie
    NATURE REVIEWS NEPHROLOGY, 2021, 17 (04) : 225 - 226
  • [4] The seroprevalence of SARS-CoV-2 in patients on haemodialysis
    Viyaasan Mahalingasivam
    Laurie Tomlinson
    Nature Reviews Nephrology, 2021, 17 : 225 - 226
  • [5] Seroprevalence and presentation of SARS-CoV-2 in pregnancy
    Crovetto, Francesca
    Crispi, Fatima
    Llurba, Elisa
    Figueras, Francesc
    Dolores Gomez-Roig, Maria
    Gratacos, Eduard
    LANCET, 2020, 396 (10250): : 530 - 531
  • [6] Study of seroprevalence of SARS-CoV-2 in Kazakhstan
    Kulimbet, Mukhtar
    Saliev, Timur
    Alimbekova, Gulzhan
    Ospanova, Dinara
    Tobzhanova, Kundyzay
    Tanabayeva, Dariga
    Zhussupov, Baurzhan
    Fakhradiyev, Ildar
    EPIDEMIOLOGY & INFECTION, 2023, 151
  • [7] Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys
    Larremore, Daniel B.
    Fosdick, Bailey K.
    Bubar, Kate M.
    Zhang, Sam
    Kissler, Stephen M.
    Metcalf, C. Jessica E.
    Buckee, Caroline O.
    Grad, Yonatan H.
    ELIFE, 2021, 10
  • [8] Estimating SARS-CoV-2 seroprevalence in long-term care: a window of opportunity
    Verschoor, Chris P.
    Bowdish, Dawn M. E.
    LANCET GLOBAL HEALTH, 2022, 3 (01): : E2 - E3
  • [9] Estimating SARS-CoV-2 seroprevalence in long-term care: a window of opportunity
    Verschoor, Chris P.
    Bowdish, Dawn M. E.
    LANCET HEALTHY LONGEVITY, 2022, 3 (01): : E2 - E3
  • [10] Seroprevalence and SARS-CoV-2 testing in healthcare occupations
    Ziemssen, Focke
    Bayyoudl, Tarek
    Bartz-Schmidt, Karl Ulrich
    Peter, Andreas
    Ueffing, Marius
    OPHTHALMOLOGE, 2020, 117 (07): : 631 - 637