Cayley graph;
normal Cayley graph;
arctransitive graph;
AUTOMORPHISM-GROUPS;
CLASSIFICATION;
D O I:
10.30495/JME.2023.2621
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a finite group and S be a subset of G such that 1(G) is not an element of. S and S-1 = S. The Cayley graph Sigma = Cay(G, S) on G with respect to S is the graph with the vertex set G such that, for , dagger is an element of G, the pair (, dagger) is an arc in Cay(G, S) if and only if dagger (-1) is an element of S. The graph S is said to be arc-transitive if its full automorphism group Aut(Sigma) is transitive on its arc set. In this paper we give a classification for arc-transitive Cayley graphs with valency six on finite abelian groups which are non-normal. Moreover, we classify all normal Cayley graphs on non-cyclic abelian groups with valency 6.
机构:
Univ Primorska, Andrej Marus Inst, Koper, Slovenia
Univ Primorska, Fac Math Nat Sci & Informat Technol, Koper, SloveniaUniv Primorska, Andrej Marus Inst, Koper, Slovenia
Hujdurovic, Ademir
Potocnik, Primoz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska 21, SI-1000 Ljubljana, Slovenia
Inst Math Phys & Mech, Dept Theoret Comp Sci, Ljubljana, SloveniaUniv Primorska, Andrej Marus Inst, Koper, Slovenia
Potocnik, Primoz
Verret, Gabriel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Auckland, Dept Math, Auckland, New ZealandUniv Primorska, Andrej Marus Inst, Koper, Slovenia
机构:
Chongqing Univ Arts & Sci, Dept Math, Chongqing 402160, Peoples R China
Chongqing Univ Arts & Sci, KLDAIP, Chongqing 402160, Peoples R ChinaChongqing Univ Arts & Sci, Dept Math, Chongqing 402160, Peoples R China