Efficient Methods for Natural Language Processing: A Survey

被引:0
|
作者
Treviso, Marcos [1 ]
Lee, Ji-Ung [2 ]
Ji, Tianchu [3 ]
van Aken, Betty [4 ]
Cao, Qingqing [5 ]
Ciosici, Manuel R. [6 ]
Hassid, Michael [7 ]
Heafield, Kenneth [8 ]
Hooker, Sara [9 ]
Raffel, Colin [10 ]
Martins, Pedro H. [1 ,11 ]
Martins, Andre F. T. [1 ,11 ]
Forde, Jessica Zosa [12 ]
Milder, Peter [16 ]
Simpson, Edwin [13 ]
Slonim, Noam [14 ]
Dodge, Jesse [15 ]
Strubell, Emma [15 ,16 ]
Balasubramanian, Niranjan [3 ]
Derczynski, Leon [5 ,17 ]
Gurevych, Iryna [2 ]
Schwartz, Roy [7 ]
机构
[1] IST U Lisbon & Inst Telecomunicacoes, Lisbon, Portugal
[2] Tech Univ Darmstadt, Darmstadt, Germany
[3] SUNY Stony Brook, Stony Brook, NY USA
[4] Berliner Hsch Tech, Berlin, Germany
[5] Univ Washington, Washington, DC USA
[6] Univ Southern Calif, Los Angeles, CA USA
[7] Hebrew Univ Jerusalem, Jerusalem, Israel
[8] Univ Edinburgh, Edinburgh, Scotland
[9] Cohere AI, San Francisco, CA USA
[10] Univ North Carolina Chapel Hill, Chapel Hill, NC USA
[11] Unbabel, Lisbon, Portugal
[12] Brown Univ, Providence, RI USA
[13] Univ Bristol, Bristol, England
[14] IBM Res, Haifa, Israel
[15] Allen Inst AI, Seattle, WA USA
[16] Carnegie Mellon Univ, Pittsburgh, PA USA
[17] IT Univ Copenhagen, Copenhagen, Denmark
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent work in natural language processing (NLP) has yielded appealing results from scaling model parameters and training data; however, using only scale to improve performance means that resource consumption also grows. Such resources include data, time, storage, or energy, all of which are naturally limited and unevenly distributed. This motivates research into efficient methods that require fewer resources to achieve similar results. This survey synthesizes and relates current methods and findings in efficient NLP. We aim to provide both guidance for conducting NLP under limited resources, and point towards promising research directions for developing more efficient methods.
引用
收藏
页码:826 / 860
页数:35
相关论文
共 50 条
  • [1] Efficient Methods for Natural Language Processing: A Survey
    Treviso, Marcos
    Ji, Tianchu
    Lee, Ji-Ung
    van Aken, Betty
    Cao, Qingqing
    R. Ciosici, Manuel
    Hassid, Michael
    Heafield, Kenneth
    Hooker, Sara
    H. Martins, Pedro
    F. T. Martins, Andre
    Milder, Peter
    Raffel, Colin
    Simpson, Edwin
    Slonim, Noam
    Dodge, Jesse
    Strubell, Emma
    Balasubramanian, Niranjan
    Derczynski, Leon
    Gurevych, Iryna
    Schwartz, Roy
    [J]. TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2023, 11 (826-860) : 826 - 860
  • [2] A survey of graphs in natural language processing
    Nastase, Vivi
    Mihalcea, Rada
    Radev, Dragomir R.
    [J]. NATURAL LANGUAGE ENGINEERING, 2015, 21 (05) : 665 - 698
  • [3] Natural language processing in finance: A survey
    Du, Kelvin
    Zhao, Yazhi
    Mao, Rui
    Xing, Frank
    Cambria, Erik
    [J]. Information Fusion, 2025, 115
  • [4] Quantum Natural Language Processing: A Comprehensive Survey
    Varmantchaonala, Charles M.
    Fendji, Jean Louis K. E.
    Schoning, Julius
    Atemkeng, Marcellin
    [J]. IEEE ACCESS, 2024, 12 : 99578 - 99598
  • [5] Perspectivist approaches to natural language processing: a survey
    Frenda, Simona
    Abercrombie, Gavin
    Basile, Valerio
    Pedrani, Alessandro
    Panizzon, Raffaella
    Cignarella, Alessandra Teresa
    Marco, Cristina
    Bernardi, Davide
    [J]. LANGUAGE RESOURCES AND EVALUATION, 2024,
  • [6] Survey of Natural Language Processing Techniques in Bioinformatics
    Zeng, Zhiqiang
    Shi, Hua
    Wu, Yun
    Hong, Zhiling
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
  • [7] Deep Learning for Natural Language Processing: A Survey
    Arkhangelskaya E.O.
    Nikolenko S.I.
    [J]. Journal of Mathematical Sciences, 2023, 273 (4) : 533 - 582
  • [8] Meta Learning for Natural Language Processing: A Survey
    Lee, Hung-yi
    Li, Shang-Wen
    Vu, Ngoc Thang
    [J]. NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 666 - 684
  • [9] Synergizing machine learning & symbolic methods: A survey on hybrid approaches to natural language processing
    Panchendrarajan, Rrubaa
    Zubiaga, Arkaitz
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 251
  • [10] Graph-Based Methods for Natural Language Processing and Understanding-A Survey and Analysis
    Mills, Michael T.
    Bourbakis, Nikolaos G.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2014, 44 (01): : 59 - 71