Machine-learning prediction of the formation of atomic gold wires by mechanically controlled break junctions

被引:0
|
作者
Ghosh, Aishwaryo [1 ]
Pabi, Biswajit [1 ]
Pal, Atindra Nath [1 ]
Saha-Dasgupta, Tanusri [1 ]
机构
[1] SN Bose Natl Ctr Basic Sci, JD Block,Sect 3, Kolkata 700106, India
关键词
MOLECULAR-DYNAMICS; SPIN; RECOGNITION; CONDUCTANCE; EFFICIENCY; BEHAVIOR;
D O I
10.1039/d3nr04301k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One of the challenging issues in the formation of atomic wires in break-junction experiments is the formation of stable monoatomic chains of reasonable length. To address this issue, in this study, we present a combination of unsupervised and supervised machine learning models trained on the experimentally measured conductance traces, with a goal to develop a microscopic understanding. Applying a machine learning model to two independent data sets from two different samples containing 72 000 and 90 000 conductance-displacement traces of single-atomic junctions, respectively, we first obtain the optimum conditions of bias and the stretching rate for the formation of chains of length > 4 angstrom. A deep learning method is subsequently applied for the classification of individual breaking traces, leading to the identification of trace features related to long-chain formation. Further investigation by ab initio molecular dynamics simulations provides a molecular-level understanding of the problem.
引用
收藏
页码:17045 / 17054
页数:10
相关论文
共 50 条
  • [1] A MACHINE-LEARNING ALGORITHM FOR OXYGENATION RESPONSE PREDICTION IN MECHANICALLY VENTILATED CHILDREN
    Smallwood, Craig
    Walsh, Brian
    Rettig, Jordan
    Thompson, John
    Santillana, Mauricio
    Arnold, John
    CRITICAL CARE MEDICINE, 2016, 44 (12)
  • [2] Mechanically controlled quantum interference in graphene break junctions
    Caneva, Sabina
    Gehring, Pascal
    Garcia-Suarez, Victor M.
    Garcia-Fuente, Amador
    Stefani, Davide
    Olavarria-Contreras, Ignacio J.
    Ferrer, Jaime
    Dekker, Cees
    van der Zant, Herre S. J.
    NATURE NANOTECHNOLOGY, 2018, 13 (12) : 1126 - +
  • [3] Mechanically controlled quantum interference in graphene break junctions
    Sabina Caneva
    Pascal Gehring
    Víctor M. García-Suárez
    Amador García-Fuente
    Davide Stefani
    Ignacio J. Olavarria-Contreras
    Jaime Ferrer
    Cees Dekker
    Herre S. J. van der Zant
    Nature Nanotechnology, 2018, 13 : 1126 - 1131
  • [4] Thermoelectric voltage measurements of atomic and molecular wires using microheater-embedded mechanically-controllable break junctions
    Morikawa, Takanori
    Arima, Akihide
    Tsutsui, Makusu
    Taniguchi, Masateru
    NANOSCALE, 2014, 6 (14) : 8235 - 8241
  • [5] Electrical characterization of DNA in mechanically controlled break-junctions
    Kang, N.
    Erbe, A.
    Scheer, E.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [6] Research progress of machine-learning algorithm for formation pore pressure prediction
    Pan, Haoyu
    Deng, Song
    Li, Chaowei
    Sun, Yanshuai
    Zhao, Yanhong
    Shi, Lin
    Hu, Chao
    PETROLEUM SCIENCE AND TECHNOLOGY, 2025, 43 (04) : 341 - 359
  • [7] Field-emission resonance measurements with mechanically controlled break junctions
    Kolesnychenko, OY
    Kolesnichenko, YA
    Shklyarevskii, O
    van Kempen, H
    PHYSICA B, 2000, 291 (3-4): : 246 - 255
  • [8] Magnetoresistance of atomic-size contacts realized with mechanically controllable break junctions
    Egle, Stefan
    Bacca, Cecile
    Pernau, Hans-Fridtjof
    Huefner, Magdalena
    Hinzke, Denise
    Nowak, Ulrich
    Scheer, Elke
    PHYSICAL REVIEW B, 2010, 81 (13)
  • [9] Machine-Learning Aided Peer Prediction
    Liu, Yang
    Chen, Yiling
    EC'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2017, : 63 - 80
  • [10] Prediction of cholinergic compounds by machine-learning
    Wijeyesakere S.J.
    Wilson D.M.
    Sue Marty M.
    Wilson, Daniel M. (MWilson3@dow.com), 1600, Elsevier B.V. (13):