NO QUASI-ISOMETRIC RIGIDITY FOR PROPER ACTIONS ON CAT(0) CUBE COMPLEXES

被引:0
|
作者
Fournier-facio, Francesco [1 ]
Genevois, Anthony [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Zurich, Switzerland
[2] Inst Montpellierain Alexander Grothendieck, Montpellier, France
关键词
ONE-RELATOR GROUPS; BOUNDED COHOMOLOGY; EXTENSIONS; SUBGROUPS;
D O I
10.1090/proc/16544
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We exhibit a variety of groups that act properly and even cocompactly on median graphs (a.k.a. one-skeletons of CAT(0) cube complexes), with quasi-isometric groups that do not admit any proper action on a median graph. This answers a question of Niblo, Sageev and Wise. Our examples are all quasi-isometrically trivial central extensions of certain cubulated groups.
引用
收藏
页码:5097 / 5109
页数:13
相关论文
共 50 条
  • [1] Quasi-isometric rigidity of Fuchsian buildings
    Xie, XD
    [J]. TOPOLOGY, 2006, 45 (01) : 101 - 169
  • [2] Boundary rigidity of CAT(0) cube complexes
    Chalopin, Jeremie
    Chepoi, Victor
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 169 : 352 - 366
  • [3] Rank Rigidity for Cat(0) Cube Complexes
    Caprace, Pierre-Emmanuel
    Sageev, Michah
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (04) : 851 - 891
  • [4] Rank Rigidity for Cat(0) Cube Complexes
    Pierre-Emmanuel Caprace
    Michah Sageev
    [J]. Geometric and Functional Analysis , 2011, 21 : 851 - 891
  • [5] Quasi-isometric rigidity and Diophantine approximation
    Schwartz, RE
    [J]. ACTA MATHEMATICA, 1996, 177 (01) : 75 - 112
  • [6] Quasi-isometric Rigidity of Solvable Groups
    Eskin, Alex
    Fisher, David
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1185 - 1208
  • [7] HARMONIC QUASI-ISOMETRIC MAPS INTO GROMOV HYPERBOLIC CAT(0)-SPACES
    Sidler, Hubert
    Wenger, Stefan
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 118 (03) : 555 - 572
  • [8] Quasi-isometric rigidity of subgroups and filtered ends
    Martinez-Pedroza, Eduardo
    Sanchez Saldana, Luis Jorge
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (06): : 3023 - 3057
  • [9] Proper actions of Grigorchuk groups on a CAT(0) cube complex
    Grégoire Schneeberger
    [J]. Geometriae Dedicata, 2024, 218 (6)
  • [10] ACTIONS OF CREMONA GROUPS ON CAT(0) CUBE COMPLEXES
    Lonjou, Anne
    Urech, Christian
    [J]. DUKE MATHEMATICAL JOURNAL, 2021, 170 (17) : 3703 - 3743