3D/4D printing of cellulose nanocrystals-based biomaterials: Additives for sustainable applications

被引:59
|
作者
Khalid, Muhammad Yasir [1 ]
Arif, Zia Ullah [2 ]
Noroozi, Reza [3 ]
Hossain, Mokarram [4 ]
Ramakrishna, Seeram [5 ]
Umer, Rehan [1 ]
机构
[1] Khalifa Univ Sci & Technol, Dept Aerosp Engn, POB 127788, Abu Dhabi, U Arab Emirates
[2] Univ Management & Technol Lahore, Dept Mech Engn, Sialkot Campus, Sialkot 51041, Pakistan
[3] Univ Tehran, Fac Engn, Sch Mech Engn, Tehran, Iran
[4] Swansea Univ, Zienkiewicz Inst Modelling Data & AI, Fac Sci & Engn, Swansea SA1 8EN, Wales
[5] Natl Univ Singapore, Ctr Nanofibers & Nanotechnol, Dept Mech Engn, Singapore 119260, Singapore
关键词
3D/4D printing; Additive manufacturing; Sustainable materials; Nanocellulose; Cellulose nanocrystals; NANOCELLULOSE-BASED HYDROGELS; SHAPE-MEMORY POLYMERS; BIOMEDICAL APPLICATIONS; 3D; SCAFFOLDS; COMPOSITES; FABRICATION; FUNCTIONALIZATION; NANOCOMPOSITES; NANOGENERATOR;
D O I
10.1016/j.ijbiomac.2023.126287
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cellulose nanocrystals (CNCs) have gained significant attraction from both industrial and academic sectors, thanks to their biodegradability, non-toxicity, and renewability with remarkable mechanical characteristics. Desirable mechanical characteristics of CNCs include high stiffness, high strength, excellent flexibility, and large surface-to-volume ratio. Additionally, the mechanical properties of CNCs can be tailored through chemical modifications for high-end applications including tissue engineering, actuating, and biomedical. Modern manufacturing methods including 3D/4D printing are highly advantageous for developing sophisticated and intricate geometries. This review highlights the major developments of additive manufactured CNCs, which promote sustainable solutions across a wide range of applications. Additionally, this contribution also presents current challenges and future research directions of CNC-based composites developed through 3D/4D printing techniques for myriad engineering sectors including tissue engineering, wound healing, wearable electronics, robotics, and anti-counterfeiting applications. Overall, this review will greatly help research scientists from chemistry, materials, biomedicine, and other disciplines to comprehend the underlying principles, mechanical properties, and applications of additively manufactured CNC-based structures.
引用
收藏
页数:28
相关论文
共 50 条
  • [2] Smart biomaterials: From 3D printing to 4D bioprinting
    Amukarimi, Shukufe
    Rezvani, Zahra
    Eghtesadi, Neda
    Mozafari, Masoud
    METHODS, 2022, 205 : 191 - 199
  • [3] Polysaccharide-based biomaterials in a journey from 3D to 4D printing
    Shokrani, Hanieh
    Shokrani, Amirhossein
    Seidi, Farzad
    Mashayekhi, Mohammad
    Kar, Saptarshi
    Nedeljkovic, Dragutin
    Kuang, Tairong
    Saeb, Mohammad Reza
    Mozafari, Masoud
    BIOENGINEERING & TRANSLATIONAL MEDICINE, 2023, 8 (04)
  • [4] Intelligent and smart biomaterials for sustainable 3D printing applications
    de Leon, Elena Herrera-Ponce
    Valle-Perez, Alexander U.
    Khan, Zainab N.
    Hauser, Charlotte A. E.
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2023, 26
  • [5] Cyclodextrins in 3D/4D printing for biomedical applications
    Alvarez-Lorenzo, Carmen
    Goyanes, Alvaro
    Concheiro, Angel
    ADDITIVE MANUFACTURING, 2024, 84
  • [6] 3D printing of cellulose nanocrystals and nanocomposites
    Siqueira, Gilberto
    Kokkinis, Dimitri
    Libanori, Rafael
    Hausmann, Michael
    Gladman, Sydney
    Neels, Antonia
    Tingaut, Philippe
    Zimmermann, Tanja
    Lewis, Jennifer
    Studart, Andre R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [7] Photopolymerization of Pollen Based Biosourced Composites and Applications in 3D and 4D Printing
    Zhang, Yijun
    Chen, Hong
    Liu, Shaohui
    Josien, Ludovic
    Schrodj, Gautier
    Simon-Masseron, Angelique
    Lalevee, Jacques
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2021, 306 (06)
  • [8] Enabling mechanically adaptive 4D printing with cellulose nanocrystals
    Seguine, Tyler W.
    Fallon, Jacob J.
    Das, Arit
    Holz, Emily A.
    Bracco, Mindy R.
    Yon, Justin E.
    Foster, Earl Johan
    Bortner, Michael J.
    GREEN MATERIALS, 2021, 9 (04) : 146 - 156
  • [9] Advances in 3D and 4D Printing of Soft Robotics and Their Applications
    Liu, Hao
    Wu, Changchun
    Lin, Senyuan
    Lam, James
    Xi, Ning
    Chen, Yonghua
    ADVANCED INTELLIGENT SYSTEMS, 2025,
  • [10] From 3D to 4D printing: approaches and typical applications
    Ye Zhou
    Wei Min Huang
    Shu Feng Kang
    Xue Lian Wu
    Hai Bao Lu
    Jun Fu
    Haipo Cui
    Journal of Mechanical Science and Technology, 2015, 29 : 4281 - 4288