Data science for next-generation recommender systems

被引:4
|
作者
Wang, Shoujin [1 ]
Wang, Yan [2 ]
Sivrikaya, Fikret [3 ,4 ]
Albayrak, Sahin [3 ,4 ]
Anelli, Vito Walter [5 ]
机构
[1] Univ Technol Sydney, Data Sci Inst, Sydney, Australia
[2] Macquarie Univ, Sch Comp, Sydney, Australia
[3] GT ARC Gemeinnutzige GmbH, Berlin, Germany
[4] Tech Univ Berlin, Fac Elect Engn & Comp Sci, Berlin, Germany
[5] Polytech Univ Bari, Bari, Italy
关键词
Data science; Machine learning; Artificial intelligence; Recommender systems; Recommendation;
D O I
10.1007/s41060-023-00404-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data science has been the foundation of recommender systems for a long time. Over the past few decades, various recommender systems have been developed using different data science and machine learning methodologies and techniques. However, no existing work systematically discusses the significant relationships between data science and recommender systems. To bridge this gap, this paper aims to systematically investigate recommender systems from the perspective of data science. Firstly, we introduce the various types of data used for recommendations and the corresponding machine learning models and methods that effectively represent each type. Next, we provide a brief outline of the representative data science and machine learning models utilized in building recommender systems. Subsequently, we share some preliminary thoughts on next-generation recommender systems. Finally, we summarize this special issue on data science for next-generation recommender systems.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 50 条
  • [1] Data science for next-generation recommender systems
    Shoujin Wang
    Yan Wang
    Fikret Sivrikaya
    Sahin Albayrak
    Vito Walter Anelli
    International Journal of Data Science and Analytics, 2023, 16 : 135 - 145
  • [2] Surgical data science for next-generation interventions
    Lena Maier-Hein
    Swaroop S. Vedula
    Stefanie Speidel
    Nassir Navab
    Ron Kikinis
    Adrian Park
    Matthias Eisenmann
    Hubertus Feussner
    Germain Forestier
    Stamatia Giannarou
    Makoto Hashizume
    Darko Katic
    Hannes Kenngott
    Michael Kranzfelder
    Anand Malpani
    Keno März
    Thomas Neumuth
    Nicolas Padoy
    Carla Pugh
    Nicolai Schoch
    Danail Stoyanov
    Russell Taylor
    Martin Wagner
    Gregory D. Hager
    Pierre Jannin
    Nature Biomedical Engineering, 2017, 1 : 691 - 696
  • [3] Surgical data science for next-generation interventions
    Maier-Hein, Lena
    Vedula, Swaroop S.
    Speidel, Stefanie
    Navab, Nassir
    Kikinis, Ron
    Park, Adrian
    Eisenmann, Matthias
    Feussner, Hubertus
    Forestier, Germain
    Giannarou, Stamatia
    Hashizume, Makoto
    Katic, Darko
    Kenngott, Hannes
    Kranzfelder, Michael
    Malpani, Anand
    Maerz, Keno
    Neumuth, Thomas
    Padoy, Nicolas
    Pugh, Carla
    Schoch, Nicolai
    Stoyanov, Danail
    Taylor, Russell
    Wagner, Martin
    Hager, Gregory D.
    Jannin, Pierre
    NATURE BIOMEDICAL ENGINEERING, 2017, 1 (09): : 691 - 696
  • [4] LensKit for Python']Python Next-Generation Software for Recommender Systems Experiments
    Ekstrand, Michael D.
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2999 - 3006
  • [5] BIG DATA Next-Generation Machines for Big Science
    Hack, James J.
    Papka, Michael E.
    COMPUTING IN SCIENCE & ENGINEERING, 2015, 17 (04) : 63 - 65
  • [6] Emerging Technologies for Next-Generation Applied Science Systems
    Kim, Byung-Seo
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [7] NGSNGS: next-generation simulator for next-generation sequencing data
    Henriksen, Rasmus Amund
    Zhao, Lei
    Korneliussen, Thorfinn Sand
    BIOINFORMATICS, 2023, 39 (01)
  • [8] Towards the Next Generation of Recommender Systems
    Tuzhilin, Alexander
    ELECTRONIC-BUSINESS INTELLIGENCE: FOR CORPORATE COMPETITIVE ADVANTAGES IN THE AGE OF EMERGING TECHNOLOGIES & GLOBALIZATION, 2010, 14 : 9 - 9
  • [9] Next-Generation Liquid Biopsies: Embracing Data Science in Oncology
    Im, Y. R.
    Tsui, D. W. Y.
    Diaz, L. A., Jr.
    Wan, J. C. M.
    TRENDS IN CANCER, 2021, 7 (04): : 283 - 292
  • [10] Next-generation plant science: putting big data to work
    Elizabeth K Brauer
    Dharmendra K Singh
    Sorina C Popescu
    Genome Biology, 15