ExTrack characterizes transition kinetics and diffusion in noisy single-particle tracks

被引:8
|
作者
Simon, Francois [1 ,2 ]
Tinevez, Jean-Yves [3 ]
van Teeffelen, Sven [1 ,2 ]
机构
[1] Univ Montreal, Fac Med, Dept Microbiol Infectiol & Immunol, Montreal, PQ, Canada
[2] Univ Paris Cite, Inst Pasteur, Microbial Morphogenesis & Growth Lab, Paris, France
[3] Univ Paris Cite, Inst Pasteur, Image Anal Hub, Paris, France
来源
JOURNAL OF CELL BIOLOGY | 2023年 / 222卷 / 05期
基金
欧洲研究理事会; 加拿大自然科学与工程研究理事会;
关键词
DNA-BINDING PROTEINS; CELL-SHAPE; MREB; DYNAMICS; MOLECULES; MEMBRANE; ROTATION; STATES; RATES;
D O I
10.1083/jcb.202208059
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Single-particle tracking microscopy is a powerful technique to investigate how proteins dynamically interact with their environment in live cells. However, the analysis of tracks is confounded by noisy molecule localization, short tracks, and rapid transitions between different motion states, notably between immobile and diffusive states. Here, we propose a probabilistic method termed ExTrack that uses the full spatio-temporal information of tracks to extract global model parameters, to calculate state probabilities at every time point, to reveal distributions of state durations, and to refine the positions of bound molecules. ExTrack works for a wide range of diffusion coefficients and transition rates, even if experimental data deviate from model assumptions. We demonstrate its capacity by applying it to slowly diffusing and rapidly transitioning bacterial envelope proteins. ExTrack greatly increases the regime of computationally analyzable noisy single-particle tracks. The ExTrack package is available in ImageJ and Python. Simon et al. present ExTrack, a tool to characterize single molecules from single-particle tracking. Using a probabilistic approach, ExTrack accurately characterizes different motion states, extracts state-duration histograms, and estimates single-molecule states, even in previously intractable cases of high noise and frequent state transitions.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Optimal Estimation of Diffusion Coefficients from Noisy Single-Particle Trajectories
    Vestergaard, Christian L.
    Blainey, Paul
    Flyvbjerg, Henrik
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 174A - 174A
  • [2] SINGLE-PARTICLE KINETICS
    TIMMONS, RJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 206 : 15 - FERT
  • [3] LATERAL DIFFUSION IN AN ARCHIPELAGO - SINGLE-PARTICLE DIFFUSION
    SAXTON, MJ
    BIOPHYSICAL JOURNAL, 1993, 64 (02) : A74 - A74
  • [4] LATERAL DIFFUSION IN AN ARCHIPELAGO - SINGLE-PARTICLE DIFFUSION
    SAXTON, MJ
    BIOPHYSICAL JOURNAL, 1993, 64 (06) : 1766 - 1780
  • [5] Plasma membrane topography and interpretation of single-particle tracks
    Jeremy Adler
    Andrew I Shevchuk
    Pavel Novak
    Yuri E Korchev
    Ingela Parmryd
    Nature Methods, 2010, 7 : 170 - 171
  • [6] Plasma membrane topography and interpretation of single-particle tracks
    Adler, Jeremy
    Shevchuk, Andrew I.
    Novak, Pavel
    Korchev, Yuri E.
    Parmryd, Ingela
    NATURE METHODS, 2010, 7 (03) : 170 - 171
  • [7] Thermodiffusion of charged colloids: Single-particle diffusion
    Dhont, Jan K. G.
    Wiegand, S.
    Duhr, S.
    Braun, D.
    LANGMUIR, 2007, 23 (04) : 1674 - 1683
  • [8] Single-Particle Diffusion Characterization by Deep Learning
    Granik, Naor
    Weiss, Lucien E.
    Nehme, Elias
    Levin, Maayan
    Chein, Michael
    Perlson, Eran
    Roichman, Yael
    Shechtman, Yoav
    BIOPHYSICAL JOURNAL, 2019, 117 (02) : 185 - 192
  • [9] Single-particle diffusion in monolayers as biomimetic membranes
    Martin, DS
    Rückerl, F
    Forstner, MB
    Bordag, N
    Käs, J
    Selle, C
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 369A - 369A
  • [10] Single-particle tracking: The distribution of diffusion coefficients
    Saxton, MJ
    BIOPHYSICAL JOURNAL, 1997, 72 (04) : 1744 - 1753