Data integration: exploiting ratios of parameter estimates from a reduced external model

被引:16
|
作者
Taylor, Jeremy M. G. [1 ]
Choi, Kyuseong [2 ]
Han, Peisong [1 ]
机构
[1] Univ Michigan, Dept Biostat, 1415 Washington Hts, Ann Arbor, MI 48019 USA
[2] Cornell Univ, Dept Stat & Data Sci, 1198 Comstock Hall,129 Garden Ave, Ithaca, NY 14853 USA
基金
美国国家卫生研究院;
关键词
Data integration; Omitted variable regression; Ratio of parameters; Transportability; REGRESSION-MODELS; PROSTATE-CANCER; INFORMATION; PREDICTION; RISK;
D O I
10.1093/biomet/asac022
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the situation of estimating the parameters in a generalized linear prediction model, from an internal dataset, where the outcome variable Y is binary and there are two sets of covariates, X and Z. We have information from an external study that provides parameter estimates for a generalized linear model of Y on X. We propose a method that makes limited assumptions about the similarity of the distributions in the two study populations. The method involves orthogonalizing the Z variables and then borrowing information about the ratio of the coefficients from the external model. The method is justified based on a new result relating the parameters in a generalized linear model to the parameters in a generalized linear model with omitted covariates. The method is applicable if the regression coefficients in the Y given X model are similar in the two populations, up to an unknown scalar constant. This type of transportability between populations is something that can be checked from the available data. The asymptotic variance of the proposed method is derived. The method is evaluated in a simulation study and shown to gain efficiency compared to simple analysis of the internal dataset, and is robust compared to an alternative method of incorporating external information.
引用
收藏
页码:119 / 134
页数:16
相关论文
共 50 条
  • [1] Towards global parameter estimation exploiting reduced data sets
    Sass, Susanne
    Tsoukalas, Angelos
    Bell, Ian H. H.
    Bongartz, Dominik
    Najman, Jaromil
    Mitsos, Alexander
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (06): : 1129 - 1141
  • [2] COMPUTATION OF VARIANCE IN COMPARTMENT MODEL PARAMETER ESTIMATES FROM DYNAMIC PET DATA
    Kamasak, Mustafa E.
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 646 - 649
  • [3] Computation of variance in compartment model parameter estimates from dynamic PET data
    Kamasak, Mustafa E.
    MEDICAL PHYSICS, 2012, 39 (05) : 2638 - 2648
  • [4] Bayesian data integration for quantifying the contribution of diverse measurements to parameter estimates
    Thijssen, Bram
    Dijkstra, Tjeerd M. H.
    Heskes, Tom
    Wessels, Lodewyk F. A.
    BIOINFORMATICS, 2018, 34 (05) : 803 - 811
  • [5] How to exploit external model of data for parameter estimation?
    Kárny, M
    Andrysek, J
    Bodini, A
    Guy, TV
    Kracík, J
    Ruggeri, F
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2006, 20 (01) : 41 - 50
  • [6] Reduced parameter model on trajectory tracking data with applications
    Zhengming Wang
    Jubo Zhu
    Science in China Series E: Technological Sciences, 1999, 42 : 190 - 199
  • [7] Reduced parameter model on trajectory tracking data with applications
    Wang, ZM
    Zhu, JB
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 1999, 42 (02): : 190 - 199
  • [8] Reduced parameter model on trajectory tracking data with applications
    王正明
    朱炬波
    Science in China(Series E:Technological Sciences) , 1999, (02) : 190 - 199
  • [9] Using SSURGO data to improve Sacramento Model a priori parameter estimates
    Anderson, RM
    Koren, VI
    Reed, SM
    JOURNAL OF HYDROLOGY, 2006, 320 (1-2) : 103 - 116
  • [10] AGC Integration and Parameter Optimization for The Reduced Dynamic Model of Turkish Power Grid
    Yesil, Merden
    Irmak, Erdal
    PROCEEDINGS 2024 IEEE 6TH GLOBAL POWER, ENERGY AND COMMUNICATION CONFERENCE, IEEE GPECOM 2024, 2024, : 563 - 570