Models and integral differentials of hyperelliptic curves

被引:0
|
作者
Muselli, Simone [1 ]
机构
[1] Univ Bristol, Bristol, England
关键词
Hyperelliptic curves; models of curves; dualising sheaf; DISCRIMINANT; CONDUCTOR;
D O I
10.1017/S001708952400003X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $C\; : \;y<^>2=f(x)$ be a hyperelliptic curve of genus $g\geq 1$ , defined over a complete discretely valued field $K$ , with ring of integers $O_K$ . Under certain conditions on $C$ , mild when residue characteristic is not $2$ , we explicitly construct the minimal regular model with normal crossings $\mathcal{C}/O_K$ of $C$ . In the same setting we determine a basis of integral differentials of $C$ , that is an $O_K$ -basis for the global sections of the relative dualising sheaf $\omega _{\mathcal{C}/O_K}$ .
引用
收藏
页码:382 / 439
页数:58
相关论文
共 50 条
  • [1] Strebel differentials on families of hyperelliptic curves
    Artamkin I.V.
    Levitskaya Y.A.
    Shabat G.B.
    Journal of Mathematical Sciences, 2009, 158 (1) : 87 - 93
  • [2] Hyperelliptic Gorenstein curves and logarithmic differentials
    Battistella, Luca
    Bozlee, Sebastian
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [3] Integral points on hyperelliptic curves
    Bugeaud, Yann
    Mignotte, Maurice
    Siksek, Samir
    Stoll, Michael
    Tengely, Szabolcs
    ALGEBRA & NUMBER THEORY, 2008, 2 (08) : 859 - 885
  • [4] ON NORMALIZED DIFFERENTIALS ON HYPERELLIPTIC CURVES OF INFINITE GENUS
    Kappeler, Thomas
    Topalov, Peter
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2017, 105 (02) : 209 - 248
  • [5] Examples of Families of Strebel Differentials on Hyperelliptic Curves
    Artamkin, I. V.
    Levitskaya, Yu. A.
    Shabat, G. B.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2009, 43 (02) : 140 - 142
  • [6] Examples of families of Strebel differentials on hyperelliptic curves
    I. V. Artamkin
    Yu. A. Levitskaya
    G. B. Shabat
    Functional Analysis and Its Applications, 2009, 43 : 140 - 142
  • [7] Meromorphic differentials with imaginary periods on degenerating hyperelliptic curves
    M. Bertola
    A. Tovbis
    Analysis and Mathematical Physics, 2015, 5 : 1 - 22
  • [8] Meromorphic differentials with imaginary periods on degenerating hyperelliptic curves
    Bertola, M.
    Tovbis, A.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2015, 5 (01) : 1 - 22
  • [9] The integral monodromy of hyperelliptic and trielliptic curves
    Jeffrey D. Achter
    Rachel Pries
    Mathematische Annalen, 2007, 338 : 187 - 206
  • [10] The integral monodromy of hyperelliptic and trielliptic curves
    Achter, Jeffrey D.
    Pries, Rachel
    MATHEMATISCHE ANNALEN, 2007, 338 (01) : 187 - 206