Guided aggregation and disparity refinement for real-time stereo matching

被引:0
|
作者
Yang, Jinlong [1 ,2 ]
Wu, Cheng [1 ]
Wang, Gang [1 ]
Chen, Dong [1 ,2 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Peoples R China
[2] Minist Educ, Engn Res Ctr Integrat & Applicat Digital Learning, Beijing 100039, Peoples R China
关键词
Stereo matching; Real-time; Disparity map upsampling; Cost aggregation;
D O I
10.1007/s11760-024-03087-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Stereo matching methods based on convolution neural network (CNN) often face challenges such as edge blurring and the loss of small structures. These issues often result in incorrect disparity assignments when upsampling the disparity map. To address this problem, we propose a disparity refinement module (GDU-CTF) that combines guided disparity map upsampling with a coarse-to-fine process. This approach effectively restores incorrect disparity values in the final disparity map. Furthermore, due to the insufficient aggregation of global geometric and contextual texture features using basic encoder-decoder 3D convolutional networks, we propose a guided patch cost aggregation module (GPA) that generates a more precise initial disparity map for textureless areas. These modules complement each other and are efficient, resulting in an accurate and lightweight framework for stereo matching. Experimental results demonstrate that our algorithm has excellent accuracy in generating disparity maps and achieves outstanding real-time performance, with an inference time of just 0.03 s on Scene Flow and KITTI datasets.
引用
收藏
页码:4467 / 4477
页数:11
相关论文
共 50 条
  • [1] Real-Time Edge-Sensitive Local Stereo Matching with Iterative Disparity Refinement
    Dumont, Maarten
    Goorts, Patrik
    Maesen, Steven
    Lafruit, Gauthier
    Bekaert, Philippe
    E-BUSINESS AND TELECOMMUNICATIONS, ICETE 2014, 2015, 554 : 435 - 456
  • [2] ITERATIVE REFINEMENT FOR REAL-TIME LOCAL STEREO MATCHING
    Dumont, Maarten
    Goorts, Patrik
    Maesen, Steven
    Degraen, Donald
    Bekaert, Philippe
    Lafruit, Gauthier
    2014 INTERNATIONAL CONFERENCE ON 3D IMAGING (IC3D), 2014,
  • [3] Real-Time Stereo Matching Algorithm with Hierarchical Refinement
    Wang Y.
    Wang H.
    Liu Y.
    Yang M.
    Quan J.
    1600, Chinese Optical Society (40):
  • [4] Multilevel Disparity Reconstruction Network for Real-Time Stereo Matching
    Liu Z.
    Zhao X.
    Journal of Shanghai Jiaotong University (Science), 2022, 27 (05): : 715 - 722
  • [5] Accelerating Cost Aggregation for Real-Time Stereo Matching
    Fang, Jianbin
    Varbanescu, Ana Lucia
    Shen, Jie
    Sips, Henk
    Saygili, Gorkem
    van der Maaten, Laurens
    PROCEEDINGS OF THE 2012 IEEE 18TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS 2012), 2012, : 472 - 481
  • [6] Feature back-projection guided residual refinement for real-time stereo matching network
    Wen, Bin
    Zhu, Han
    Yang, Chao
    Li, Zhicong
    Cao, Renxuan
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 103
  • [7] Real-time object segmentation using disparity map of stereo matching
    Han, Dongil
    Lee, Byoungmoo
    Cho, Jae Il
    Hwang, Dae-Hwan
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (02) : 770 - 777
  • [8] Context Geometry Volume and Warping Refinement for Real-Time Stereo Matching
    Liu, Ning
    Zhao, Nannan
    Yang, Ou
    Wu, Qingtian
    Ouyang, Xinyu
    ELECTRONICS, 2025, 14 (05):
  • [9] Accurate Image-Guided Stereo Matching With Efficient Matching Cost and Disparity Refinement
    Zhan, Yunlong
    Gu, Yuzhang
    Huang, Kui
    Zhang, Cheng
    Hu, Keli
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2016, 26 (09) : 1632 - 1645
  • [10] Adaptive Disparity Candidates Prediction Network for Efficient Real-Time Stereo Matching
    Dai, He
    Zhang, Xuchong
    Zhao, Yongli
    Sun, Hongbin
    Zheng, Nanning
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 3099 - 3110