Multi-stage strain-hardening and nano-twinning strengthening Co40Cr22Ni15Fe14Mo4Si3Mn2 multi-principal element alloy

被引:3
|
作者
He, Jiayi [1 ]
Wu, Ning [1 ]
Wang, Chen [1 ]
Wu, Zikai [1 ]
Li, Yimin [1 ]
Luo, Fenghua [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
关键词
Multi -principal element alloy; Thermomechanical treatment; Strain hardening; Aging; Strengthening; HIGH-ENTROPY ALLOY; STACKING-FAULT ENERGY; MECHANICAL-PROPERTIES; DEFORMATION-BEHAVIOR; MICROSTRUCTURE EVOLUTION; TENSILE PROPERTIES; PHASE-STABILITY; PRECIPITATION; DUCTILITY; PROPERTY;
D O I
10.1016/j.jmrt.2023.12.216
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
CoCrNiFe multi-principal element alloy (MPEA) plates were prepared by melting and rolling. Thermomechanical treatment (cold rolling and aging) was developed to modify the formation of lattice defects and precipitates. The results show that the Co40Cr22Ni15Fe14Mo4Si3Mn2 MPEA have excellent room temperature ultimate tensile strength and hardness of 1946 MPa and 684 HV0.1. Electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques were used to reveal the microstructure and provide insight into the mechanism. The strengthening mechanism comes from the multiple factors, and most notably, the interaction between nano-twins and Lomer-Cottrell locks. The presence of nano-twins and stacking faults has a significant impact on the strain hardening behavior of the alloy. At the same time, the occurrence and development of deformation substructure dominated by dislocation configuration is the reasons for the material to achieve multistage strain hardening (MSSH). This method of realizing MSSH behavior by adjusting microstructure is of great significance in the design and application of FCC MPEA and can be extended to other FCC alloys.
引用
收藏
页码:3687 / 3698
页数:12
相关论文
共 11 条
  • [1] Element redistributions during early stages of oxidation in a Ni38Cr22Fe20Mn10Co10 multi-principal element alloy
    Kautz, Elizabeth J.
    Lambeets, Sten, V
    Perea, Daniel E.
    Gerard, Angela Y.
    Han, Junsoo
    Scully, John R.
    Saal, James E.
    Schreiber, Daniel K.
    SCRIPTA MATERIALIA, 2021, 194
  • [2] Enhancing oxidation resistance with Si in Fe36Ni36Al15Cr10Si2Mo1 multi-principal element alloy at 700 °C
    Liu, Xiaoming
    Shi, Xinbo
    Wang, Jianbin
    Jia, Yuhao
    Wang, Zhijun
    He, Feng
    Li, Junjie
    Wang, Jincheng
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (23) : 10444 - 10460
  • [3] Incipient Plasticity of a Non-equiatomic Co21.5Cr21.5Fe21.5Mn21.5Ni14 Multi-principal Element Alloy
    Chethan Konkati
    Ankur Chauhan
    Metallurgical and Materials Transactions A, 2023, 54 : 3973 - 3987
  • [4] Incipient Plasticity of a Non-equiatomic Co21.5Cr21.5Fe21.5Mn21.5Ni14 Multi-principal Element Alloy
    Konkati, Chethan
    Chauhan, Ankur
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2023, 54 (10): : 3973 - 3987
  • [5] A comparative study of metastability-driven and twinning-assisted hardening in Fe40Mn40Co10Cr10 40 Mn 40 Co 10 Cr 10 and FeMnCoCrNi multi-principal element alloys in cold rolling
    Astafurova, Elena
    Astafurov, Sergey
    Luchin, Andrey
    Gurtova, Darya
    Melnikov, Evgenii
    Sanin, Vitaliy
    MATERIALS LETTERS, 2024, 373
  • [6] Potential Dependent Mn Oxidation and Its Role in Passivation of Ni38Fe20Cr22Mn10Co10 Multi-Principal Element Alloy Using Multi-Element Resolved Atomic Emission Spectroelectrochemistry
    Han, Junsoo
    Li, Xuejie
    Gerard, Angela Y.
    Lu, Pin
    Saal, James E.
    Frankel, Gerald S.
    Ogle, Kevin
    Scully, John R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (05)
  • [7] Microstructure and hardening mechanisms of oxygen-doped (Fe3Co2Ni2Cr3)94-xAlxO6 multi-principal element alloys
    Han, Xin
    Peng, Chong
    Zhou, Guangtong
    Han, Chan
    Li, Kenan
    Wang, Ningchang
    Liang, Shuju
    Li, Rui
    Ke, Yujiao
    INTERMETALLICS, 2025, 180
  • [8] Excellent strength-ductility combination in Co36Cr15Fe18Ni18Al8Ti4Mo1 multi-principal element alloys by dual-morphology B2 precipitates strengthening
    Liu, X. S.
    Li, R.
    Fan, X. F.
    Liu, Q. Q.
    Tong, X.
    Li, A. X.
    Xu, S.
    Yang, H.
    Yu, S. B.
    Jiang, M. H.
    Huo, C.
    Yu, P. F.
    Dove, M. T.
    Li, G.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 134 : 60 - 66
  • [9] Strength-ductility synergy and superior strain-hardening ability of Ni 38 Co 25 Fe 13 Cr 10 Al 7 Ti 7 multi principal element alloy through heterogeneous L1 2 structure modulation
    Yang, Yitong
    Pang, Jingyu
    Zhang, Zhuqun
    Wang, Yuting
    Ji, Yu
    Zhu, Zhengwang
    Zhang, Long
    Wang, Aimin
    Zhang, Haifeng
    Zhang, Hongwei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 984
  • [10] Microstructural evolution in a precipitate-hardened (Fe0.3Ni0.3Mn0.3Cr0.1)94Ti2Al4 multi-principal element alloy during high-pressure torsion
    Luebbe, Matthew
    Duan, Jiaqi
    Cao, Peipei
    Lu, Zhaoping
    Islamgaliev, Rinat K.
    Valiev, Ruslan Z.
    Liu, Yuzi
    Wen, Haiming
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (28) : 13200 - 13217