PDMS/PVDF- MoS2 based flexible triboelectric nanogenerator for mechanical energy harvesting

被引:15
|
作者
Singh, Vishal [1 ]
Singh, Bharti [1 ]
机构
[1] Delhi Technol Univ, Dept Appl Phys, Delhi 110042, India
关键词
Flexible; Thin film; Triboelectric; Nanogenerator; Dielectric; HIGHLY EFFICIENT; PHASE-FORMATION; PVDF; NANOCOMPOSITE; PERFORMANCE; FILLERS; DRIVEN; SENSOR; FILMS;
D O I
10.1016/j.polymer.2023.125910
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A green energy generating device that can meet the energy requirements of future technologies without contaminating our environment is increasingly in demand. These devices can harvest energy from ambient sources that are already present in our surroundings. Triboelectric nanogenerator (TENG) has received a lot of attention as a potential sustainable source of power for smart devices, and numerous methods have been explored to enhance its output performance. In this work, we have fabricated a high performance TENG based on MoS2 filled PVDF for harvesting mechanical energy. Effect of MoS2 loading into the PVDF matrix was studied as a function of MoS2 wt% (0, 3, 5, 7, 10%). It has been observed that the fraction of crystalline beta-phase and the dielectric constant of PVDF got enhanced after the addition of MoS2. In addition to the dielectric constant, the surface roughness of the MoS2 filled PVDF sample increases, which further contribute to the enhanced triboelectric performance. The TENG device with 7 wt % of MoS2 in PVDF matrix as one of the layer and PDMS as second layer in the vertical contact-separation geometry generates the maximum triboelectric output voltage and current of 189 V and 1.61 mu A respectively, while the bare PVDF based TENG generates an output voltage and current of 107 V and 0.88 mu A respectively. The TENG with 7 wt % of MoS2 also generates a maximum power density of 104.5 mu Wcm(-2). Further, effect of the tapping frequency and the contact force was also analysed on the PDMS/PVDF-MoS2 based TENG with 7 wt% of MoS2. The triboelectric output voltage and current were also found to be increased with the rise in frequency and the contact force and generated a maximum voltage of similar to 211 V. This study proposes an effective approach for enhancing the performance of triboelectric nanogenerator by changing the filler concentration. The fabricated TENG demonstrated the practical application, by powering electronic stopwatch and scientific calculator.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] MoS2-PVDF/PDMS based flexible hybrid piezo-triboelectric nanogenerator for harvesting mechanical energy
    Singh, Vishal
    Singh, Bharti
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 941
  • [2] Triboelectric Nanogenerator Based on MoS2/Graphene Composite
    Geng K.
    Xu Z.
    Li X.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (10): : 113 - 119and128
  • [3] A triboelectric nanogenerator based on TPU/PVDF electrospinning for mechanical energy harvesting and monitoring running step rate
    Zhou, Huafeng
    AIP ADVANCES, 2024, 14 (06)
  • [4] Wearable Woven Triboelectric Nanogenerator Utilizing Electrospun PVDF Nanofibers for Mechanical Energy Harvesting
    Shaikh, Muhammad Omar
    Huang, Yu-Bin
    Wang, Cheng-Chien
    Chuang, Cheng-Hsin
    MICROMACHINES, 2019, 10 (07)
  • [5] Effect of variation of MoS2 concentration on the piezoelectric performance of PVDF-MoS2 based flexible nanogenerator
    Prajapati, Gyanendra Kumar
    Katla, Rishabh
    Singh, Bharti
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 4861 - 4865
  • [6] A progressive strategy for harvesting mechanical energy using flexible PVDF-rGO-MoS2 nanocomposites film-based piezoelectric nanogenerator
    Faraz, Mohd
    Singh, Huidrom Hemojit
    Khare, Neeraj
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 890
  • [7] A Novel Graphite/PDMS based Flexible Triboelectric Nanogenerator
    Zhang, X.
    He, D.
    Palaniappan, V
    Maddipatla, D.
    Yang, Q.
    Atashbar, M. Z.
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON FLEXIBLE AND PRINTABLE SENSORS AND SYSTEMS (FLEPS), 2021,
  • [8] A multifunctional triboelectric nanogenerator based on PDMS/ MXene for bio-mechanical energy harvesting and volleyball training monitoring
    Yang, Renwei
    HELIYON, 2024, 10 (11)
  • [9] A flat-structured triboelectric nanogenerator based on PDMS/MXene for mechanical energy harvesting boxing training monitoring
    School of Physical Education, Shenzhen University, Guangdong, Shenzhen
    518000, China
    不详
    510520, China
    AIP Adv., 2024, 11
  • [10] Highly Flexible Triboelectric Nanogenerator Based on PVDF Nanofibers for Biomechanical Energy Harvesting and Telerehabilitation via Human Body Movement
    Varghese, Harris
    Athira, B. S.
    Chandran, Achu
    IEEE SENSORS JOURNAL, 2023, 23 (13) : 13925 - 13932