Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot

被引:68
|
作者
Wu, Lei [1 ,2 ,3 ]
Huang, Xiaodong [1 ]
Cui, Junguo [2 ]
Liu, Chao [2 ]
Xiao, Wensheng [2 ]
机构
[1] China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Natl Engn Lab Offshore Geophys & Explorat Equipmen, Qingdao 266580, Peoples R China
[3] Nanyang Technol Univ, Maritime Inst NTU, Sch Civil & Environm Engn, Singapore City 639798, Singapore
基金
国家重点研发计划;
关键词
Path planning; Ant colony optimization algorithm; Pheromone updating; Heuristic function; State transition probability; INTELLIGENCE; SYSTEM;
D O I
10.1016/j.eswa.2022.119410
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the key point for auto-navigation of mobile robot, path planning is a research hotspot in the field of robot. Generally, the ant colony optimization algorithm (ACO) is one of the commonly used approaches aiming to solve the problem of path planning of mobile robot. Nevertheless, the traditional ACO has the shortcomings such as slow convergence speed, inefficiency and easily fall into local optimal values. Thus, a novel variant of ACO is proposed in this study. In detail, a new heuristic mechanism with orientation information is firstly introduced to add direction guidance during the iteration process, further to advance the convergence speed of algorithm. Secondly, an improved heuristic function is presented to enhance the purposiveness and reduce the number of turn times of planned path. Then, an improved state transition probability rule is introduced to improve the search efficiency significantly and increase the swarm diversity. Moreover, a new method for unevenly distributing initial pheromone concentration is proposed to avoid blind searching. After integrating the four improvements, the new variation of ACO called modified adaptive ant colony optimization algorithm (MAACO) is formed. Subsequently, parameter optimization of MAACO is carried out. For verifying the effectiveness of the proposed MAACO, a series of experiments are conducted based on five static space environment modes and one dynamic environment mode. Comparing with 13 existing approaches for solving the problem of path planning of mobile robot, including several variants of ACO and two commonly used algorithms (A* algorithm and Dijkstra algorithm), the experimental results demonstrate the merits of MAACO in terms of decreasing the path length, reducing the number of turn times, and promoting the convergence speed. In detail, in all the static simulation experiments, the proposed MAACO generates the shortest path length with a standard deviation of zero, and achieves the least number of turn times within the smallest convergence generation. In terms of the five experiments, the average number of reducing turn times is two with a generally reduction ratio of 22.2% compared with the best existing results. The obtained results of MAACO prove its practicality and high-efficiency for path planning.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Improved Ant Colony Optimization Algorithm and Its Application on Path Planning of Mobile Robot
    Zhao, Juanping
    Fu, Xiuhui
    JOURNAL OF COMPUTERS, 2012, 7 (08) : 2055 - 2062
  • [2] Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm
    Miao, Changwei
    Chen, Guangzhu
    Yan, Chengliang
    Wu, Yuanyuan
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 156
  • [3] Path planning of mobile robot based on adaptive ant colony algorithm
    Zheng, Yan
    Luo, Qiang
    Wang, Haibao
    Wang, Changhong
    Chen, Xin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (04) : 5329 - 5338
  • [4] Path Planning of Mobile Robot Based on Adaptive Ant Colony Optimization
    Yang, Xiuqing
    Xiong, Ni
    Xiang, Yong
    Du, Mingqian
    Zhou, Xinzhi
    Liu, Yong
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [5] An improved ant colony optimization algorithm in mobile robot path planning
    Li, Hui
    Yang, Kang
    Luo, Wanbo
    Dong, Bo
    Qin, Wei
    Cong, Shuofeng
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 4102 - 4107
  • [6] The Application of an Improved Ant Colony Algorithm in Mobile Robot Path Planning
    Zhu Xiaoguang
    Han Qingyao
    Wang Zhangqi
    MATERIALS, MECHATRONICS AND AUTOMATION, PTS 1-3, 2011, 467-469 : 222 - 225
  • [7] Application of Improved Ant Colony Algorithm in Mobile Robot Path Planning
    Li, Ming
    Wang, Lei
    Cai, Jing-Cao
    2016 INTERNATIONAL CONFERENCE ON MECHANICS DESIGN, MANUFACTURING AND AUTOMATION (MDM 2016), 2016, : 15 - 19
  • [8] Application of improved ant colony algorithm in mobile robot path planning
    Gao, Xiang
    Jin, Wuyin
    Zhang, Xia
    Zhang, Binfei
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [9] A novel parallel ant colony optimization algorithm for mobile robot path planning
    Si J.
    Bao X.
    Mathematical Biosciences and Engineering, 2024, 21 (02) : 2568 - 2586
  • [10] Mobile Robot Path Planning based on Parameter Optimization Ant Colony Algorithm
    Wang Zhangqi
    Zhu Xiaoguang
    Han Qingyao
    CEIS 2011, 2011, 15