The reverse design of a tunable terahertz metasurface antenna based on a deep neural network

被引:2
|
作者
Dao, Ri-Na [1 ]
Qi, Li-Mei [1 ,2 ]
Hu, Kai-Xiang [3 ]
Yang, Jun-Li [3 ]
Liu, Zi-Yu [1 ]
Wu, Li-Qin [4 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
[2] Shandong Normal Univ, Collaborat Innovat Ctr Light Manipulat & Applicat, Jinan, Peoples R China
[3] Beijing Univ Posts & Telecommun, Int Sch, Beijing 100876, Peoples R China
[4] Beijing Acad Sci & Technol, Inst Radiat Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; metasurface; reverse design; terahertz antenna; INVERSE DESIGN; ABSORBER; OPTICS;
D O I
10.1002/mop.33471
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The reverse design of a tunable terahertz metasurface antenna is proposed based on the deep neural network (DNN). To obtain the tunable properties of the terahertz antenna, the phase-changed material vanadium dioxide (VO2) is introduced by controlling the voltage without changing the structures of the metasurface antenna. To improve the efficiency and accuracy of the terahertz antenna, the DNN is used to establish the relationship of amplitude and phase for the antenna unit. The prediction errors are below 10%. The radiation direction of the antenna can be changed from 0 degrees to 52 degrees by the VO2 with different states. The prediction error of angle is only 1 degrees difference from the theoretical calculation. This reverse design method can be extended to other metasurface devices with improved efficiency and accuracy.
引用
收藏
页码:264 / 272
页数:9
相关论文
共 50 条
  • [1] Deep neural network-aided design of terahertz bifunctional metasurface
    Lv, Yisong
    Yi, Da
    Pei, Yadong
    Li, Fangwei
    Gao, Wei
    Zhu, Yansheng
    RESULTS IN PHYSICS, 2023, 47
  • [2] Inverse design of a metasurface based on a deep tandem neural network
    Xu, Peng
    Lou, Jun
    Li, Chenxia
    Jing, Xufeng
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2024, 41 (02) : A1 - A5
  • [3] Deep neural network-enabled bifunctional terahertz metasurface design for absorption and polarization conversion
    Lv, Yisong
    Liu, Shujie
    Tian, Jinping
    Mou, Chongrong
    RESULTS IN PHYSICS, 2023, 53
  • [4] Design of a transmissive metasurface antenna using deep neural networks
    Noh, Jaebum
    Nam, Yong-Hyun
    So, Sunae
    Lee, Chihun
    Lee, Sun-Gyu
    Kim, Yongjune
    Kim, Tae-Hyung
    Lee, Jeong-Hae
    Rho, Junsuk
    OPTICAL MATERIALS EXPRESS, 2021, 11 (07) : 2310 - 2317
  • [5] Design of a graphene-based chiral trifunctional tunable terahertz metasurface
    Hu, Kun
    Yao, Yunpeng
    Ye, Lipengan
    Hu, Zongli
    Tang, Bin
    Su, Wei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (05) : 2615 - 2622
  • [6] Deep Learning-Enhanced Inverse Modeling of Terahertz Metasurface Based on a Convolutional Neural Network Technique
    Gao, Muzhi
    Jiang, Dawei
    Zhu, Gaoyang
    Wang, Bin
    PHOTONICS, 2024, 11 (05)
  • [7] Deep neural network enabled active metasurface embedded design
    An, Sensong
    Zheng, Bowen
    Julian, Matthew
    Williams, Calum
    Tang, Hong
    Gu, Tian
    Zhang, Hualiang
    Kim, Hyun Jung
    Hu, Juejun
    NANOPHOTONICS, 2022, 11 (17) : 4149 - 4158
  • [8] Artificial neural network-based inverse design of metasurface absorber with tunable absorption window
    Ding, Zhipeng
    Su, Wei
    Luo, Yinlong
    Ye, Lipengan
    Li, Wenlong
    Zhou, Yuanhang
    Tang, Bin
    Yao, Hongbing
    MATERIALS & DESIGN, 2023, 234
  • [9] Inverse design of a broadband tunable terahertz metasurface absorber
    Wang, Yuandong
    Wu, Guozhang
    Wang, Yibo
    Liu, Jianguo
    OPTICS COMMUNICATIONS, 2023, 540
  • [10] Deep neural network-based automatic metasurface design with a wide frequency range
    Ghorbani, Fardin
    Beyraghi, Sina
    Shabanpour, Javad
    Oraizi, Homayoon
    Soleimani, Hossein
    Soleimani, Mohammad
    SCIENTIFIC REPORTS, 2021, 11 (01)