Smooth hyperelastic potentials for bimodular materials: 3D case

被引:0
|
作者
Kuznetsov, Sergey, V [1 ]
机构
[1] Moscow State Univ Civil Engn, Moscow, Russia
关键词
Bimodular medium; Hyperelastic potential; Isotropy; Strain; Invariants; DIFFERENT MODULI; WAVE-PROPAGATION; TENSION; STRESS; MODEL; COMPRESSION; VIBRATIONS; MOTION;
D O I
10.1016/j.ijnonlinmec.2023.104597
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A family of one parametric infinitely differentiable hyperelastic potentials for three-dimensional problems of bimodular isotropic materials at infinitesimal strain is constructed, yielding a set of uniform approximations to the discontinuous stepwise elastic modulus adopted in the original one-dimensional bimodular formulation. The introduced potentials enable either analytical solutions or construction of the explicit governing equations for a number of static and dynamic problems. Theorem of convergence to the discontinuous bimodular modulus is proved.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Smooth hyperelastic potentials for 1D problems of bimodular materials
    Kuznetsov, Sergey V.
    ACTA MECHANICA, 2024, 235 (04) : 1911 - 1920
  • [2] Smooth hyperelastic potentials for 1D problems of bimodular materials
    Sergey V. Kuznetsov
    Acta Mechanica, 2024, 235 : 1911 - 1920
  • [3] A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials
    L.Zhang
    H.W.Zhang
    J.Wu
    B.Yan
    Acta Mechanica Sinica, 2016, 32 (03) : 481 - 490
  • [4] A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials
    L. Zhang
    H. W. Zhang
    J. Wu
    B. Yan
    Acta Mechanica Sinica, 2016, 32 : 481 - 490
  • [5] A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials
    Zhang, L.
    Zhang, H. W.
    Wu, J.
    Yan, B.
    ACTA MECHANICA SINICA, 2016, 32 (03) : 481 - 490
  • [6] Finite Element Method for 3D Deformation of Hyperelastic Materials
    V. Yu. Salamatova
    Differential Equations, 2019, 55 : 990 - 999
  • [7] Finite Element Method for 3D Deformation of Hyperelastic Materials
    Salamatova, V. Yu.
    DIFFERENTIAL EQUATIONS, 2019, 55 (07) : 990 - 999
  • [8] Tailoring of functionally graded hyperelastic materials via grayscale mask stereolithography 3D printing
    Valizadeh, Iman
    Al Aboud, Ahmad
    Doersam, Edgar
    Weeger, Oliver
    ADDITIVE MANUFACTURING, 2021, 47
  • [9] 3D imaging of complex materials: the case of cement
    Artioli, Gilberto
    Dalconi, Maria Chiara
    Parisatto, Matteo
    Valentini, Luca
    Voltolini, Marco
    Ferrari, Giorgio
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2012, 103 (02) : 145 - 150
  • [10] 3D Hyperelastic constitutive model for yarn behaviour description
    Charmetant, Adrien
    Vidal-Salle, Emmanuelle
    Boisse, Philippe
    MATERIAL FORMING - ESAFORM 2012, PTS 1 & 2, 2012, 504-506 : 267 - 272