Maximal Function and Riesz Transform Characterizations of Hardy Spaces Associated with Homogeneous Higher Order Elliptic Operators and Ball Quasi-Banach Function Spaces

被引:0
|
作者
Lin, Xiaosheng [1 ]
Yang, Dachun [1 ]
Yang, Sibei [2 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Minist Educ China, Sch Math Sci, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Ball quasi-Banach function space; High order elliptic operator; Hardy space; Maximal function; Riesz transform; SELF-ADJOINT OPERATORS; REAL-VARIABLE CHARACTERIZATIONS; STRONGLY LIPSCHITZ-DOMAINS; JOHN-NIRENBERG INEQUALITY; MORREY SPACES; DECOMPOSITION; DISTRIBUTIONS; BOUNDEDNESS; SOBOLEV; LP;
D O I
10.1007/s00365-023-09676-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a homogeneous divergence form higher order elliptic operator with complex bounded measurable coefficients on R-n and X a ball quasi-Banach function space on R-n satisfying some mild assumptions. Denote by H-X,(L) (R-n) the Hardy space, associated with both L and X, which is defined via the Lusin area function related to the semigroup generated by L. In this article, the authors establish both the maximal function and the Riesz transform characterizations of H-X,H- L (R-n). The results obtained in this article have a wide range of generality and can be applied to the weighted Hardy space, the variableHardy space, themixed-normHardy space, theOrlicz-Hardy space, the Orlicz-slice Hardy space, and the Morrey-Hardy space, associated with L. In particular, even when L is a second order divergence form elliptic operator, both the maximal function and the Riesz transform characterizations of the mixed-norm Hardy space, the Orlicz-slice Hardy space, and the Morrey-Hardy space, associated with L, obtained in this article, are completely new.
引用
收藏
页数:61
相关论文
共 50 条
  • [1] Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Fan Wang
    Dachun Yang
    Wen Yuan
    [J]. Journal of Fourier Analysis and Applications, 2023, 29
  • [2] Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (05)
  • [3] Maximal function characterizations of Hardy spaces associated to homogeneous higher order elliptic operators
    Cao, Jun
    Mayboroda, Svitlana
    Yang, Dachun
    [J]. FORUM MATHEMATICUM, 2016, 28 (05) : 823 - 856
  • [4] Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: Characterizations of maximal functions, decompositions, and dual spaces
    Yan, Xianjie
    He, Ziyi
    Yang, Dachun
    Yuan, Wen
    [J]. MATHEMATISCHE NACHRICHTEN, 2023, 296 (07) : 3056 - 3116
  • [5] Fourier transform of Hardy spaces associated with ball quasi-Banach function spaces
    Huang, Long
    Chang, Der-Chen
    Yang, Dachun
    [J]. APPLICABLE ANALYSIS, 2022, 101 (11) : 3825 - 3840
  • [6] Bochner–Riesz Means on Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Jian Tan
    Linjing Zhang
    [J]. Mediterranean Journal of Mathematics, 2023, 20
  • [7] Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces
    Yan, Xianjie
    Yang, Dachun
    Yuan, Wen
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (04) : 769 - 806
  • [8] Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces
    Xianjie Yan
    Dachun Yang
    Wen Yuan
    [J]. Frontiers of Mathematics in China, 2020, 15 : 769 - 806
  • [9] Bochner-Riesz Means on Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Tan, Jian
    Zhang, Linjing
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (05)
  • [10] Hardy spaces for ball quasi-Banach function spaces
    Sawano, Yoshihiro
    Ho, Kwok-Pun
    Yang, Dachun
    Yang, Sibei
    [J]. DISSERTATIONES MATHEMATICAE, 2017, (525) : 1 - 102