Increase in the acousto-optic figure of merit in SiO2 crystals due to optical activity. Anisotropic acousto-optic interactions

被引:3
|
作者
Mys, O. [1 ]
Adamenko, D. [1 ]
Vlokh, R. [1 ]
机构
[1] OG Vlokh Inst Phys Opt, 23 Dragomanov St, UA-79005 Lvov, Ukraine
关键词
acousto-optic diffraction; anisotropic diffraction; diffraction efficiency; quartz crystals; optical activity; ellipticity of optical eigenwaves; DIFFRACTION; WAVES; TEO2;
D O I
10.3116/16091833/24/3/262/2023
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze anisotropic acousto-optic (AO) interactions of three possible acoustic eigenwaves with the incident and diffracted optical eigenwaves elliptically polarized due to optical activity effect in quartz crystals. Dependences of the effective elasto-optic (EO) coefficient and the AO figure of merit on the diffraction angle are obtained. We demonstrate that proper accounting for a nonzero ellipticity of the optical eigenwaves leads to nonzero values of some effective EO coefficients and a presence of the corresponding AO interactions of so-called types VII and VIII. We also reveal the effect of non-orthogonality of the acoustic waves on the effective EO coefficient and the AO figure of merit at the AO interactions of the types VII and VIII. The ellipticity of the optical eigenwaves manifests itself in peak-like angular maxima of the effective EO coefficient and the AO figure of merit for all the types of AO interactions under consideration. These maxima appear around the diffraction angles 0 and 180 deg that correspond to the collinear AO interaction between the circularly polarized optical waves propagating along the optic axis. The maximal values of the AO figure of merit in this case are respectively equal to 1.16x10-15, 0.36x10-15 and 0.48x10-15s3/kg at the types VII, VIII and IX of AO interactions. Finally, we show that a deviation of the incidence angle from 90 deg at the interaction types VII and VIII leads to zeroing of the effective EO coefficient and the AO figure of merit.
引用
收藏
页码:262 / 275
页数:14
相关论文
共 50 条
  • [1] Anisotropy of acousto-optic figure of merit at the collinear acousto-optic diffraction in hexagonal CdS crystals
    Mys, O.
    Martynyuk-Lototska, I
    Adamenko, D.
    Kostyrko, M.
    Vlokh, R.
    UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2018, 19 (03) : 165 - 178
  • [2] Acousto-optic figure of merit search
    Pfeiffer, Jonathan B.
    Wagner, Kelvin H.
    PROCEEDINGS OF THE 2015 ICU INTERNATIONAL CONGRESS ON ULTRASONICS, 2015, 70 : 762 - 765
  • [3] Anisotropy of acousto-optic figure of merit in lithium tetraborate crystals
    Mys, Oksana
    Krupych, Oleg
    Vlokh, Rostyslav
    JOURNAL OF MODERN OPTICS, 2018, 65 (12) : 1486 - 1494
  • [4] Analysis of Acousto-Optic Figure of Merit in KGW and KYW Crystals
    Yushkov, Konstantin B.
    Naumenko, Natalya F.
    Molchanov, Vladimir Ya
    MATERIALS, 2022, 15 (22)
  • [5] Anisotropy of acousto-optic figure of merit for LiNbO3 crystals: anisotropic diffraction
    Mys, Oksana
    Kostyrko, Myroslav
    Vlokh, Rostyslav
    APPLIED OPTICS, 2016, 55 (09) : 2439 - 2450
  • [6] New Method to Calculate Spatial Distribution of Acousto-Optic Figure of Merit in Crystals
    Muromets, A. V.
    Trushin, A. S.
    ACTA PHYSICA POLONICA A, 2015, 127 (01) : 93 - 95
  • [7] Anisotropy of an acousto-optic figure of merit for NaBi(MoO4)2 crystals
    Mys, Oksana
    Krupych, Oleh
    Vlokh, Rostyslav
    APPLIED OPTICS, 2016, 55 (28) : 7941 - 7955
  • [8] Anisotropy of acousto-optic figure of merit in optically isotropic media
    Mys, Oksana
    Kostyrko, Myroslav
    Smyk, Mykola
    Krupych, Oleh
    Vlokh, Rostyslav
    APPLIED OPTICS, 2014, 53 (20) : 4616 - 4627
  • [9] Anisotropic acousto-optic diffraction in tellurium in the presence of optical activity
    Knyazev, G. A.
    Voloshinov, V. B.
    Vorobev, E. S.
    Khitrin, N. V.
    PHYSICS OF WAVE PHENOMENA, 2013, 21 (04) : 261 - 263
  • [10] Anisotropic acousto-optic diffraction in tellurium in the presence of optical activity
    G. A. Knyazev
    V. B. Voloshinov
    E. S. Vorobev
    N. V. Khitrin
    Physics of Wave Phenomena, 2013, 21 : 261 - 263