On generalized K-functionals in Lp for 0 < p < 1

被引:0
|
作者
Kolomoitsev, Yurii [1 ]
Lomako, Tetiana [1 ]
机构
[1] Gottingen Univ, Inst Numer & Appl Math, Lotzestr 16-18, D-37083 Gottingen, Germany
关键词
K-functional; L-p with 0 < p < 1; Fractional derivatives; Homogeneous multipliers; Quadrature formula; DERIVATIVES;
D O I
10.1007/s13540-023-00160-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Peetre K-functional between the space L-p with 0 < p < 1 and the corresponding smooth function space W-p(?) generated by the Weyl-type differential operator ? (D), where ? is a homogeneous function of any positive order, is identically zero. The proof of the main results is based on the properties of the de la Vallee Poussin kernels and the quadrature formulas for trigonometric polynomials and entire functions of exponential type.
引用
收藏
页码:1016 / 1030
页数:15
相关论文
共 50 条
  • [1] Embedding subspaces of Lp into lpN, 0 &lt; p &lt; 1
    Schechtman, G
    Zvavitch, A
    [J]. MATHEMATISCHE NACHRICHTEN, 2001, 227 : 133 - 142
  • [2] The Lp Minkowski problem for polytopes for 0 &lt; p &lt; 1
    Zhu, Guangxian
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (04) : 1070 - 1094
  • [3] On the Lp torsional Minkowski problem for 0 &lt; p &lt; 1
    Hu, Jinrong
    Liu, Jiaqian
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2021, 128
  • [4] The Lp-mixed quermassintegrals for 0 &lt; p &lt; 1
    Zhao, Chang-Jian
    Bencze, Mihaly
    [J]. ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (02) : 519 - 528
  • [5] The "Full Muntz Theorem" in Lp [0,1] for 0 &lt; p &lt; ∞
    Erdélyi, T
    Johnson, WB
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1): : 145 - 172
  • [6] Density of systems of trigonometric polynomials in Lp, 0 &lt; p &lt; 1
    Klotz, L.
    Kuersten, K. -D.
    [J]. ANALYSIS MATHEMATICA, 2008, 34 (02) : 105 - 117
  • [7] On equivalence of moduli of smoothness of splines in Lp, 0 &lt; p &lt; 1
    Kopotun, Kirill A.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2006, 143 (01) : 36 - 43
  • [8] On the duals of LP spaces with 0&lt;p&lt;1
    Farkas, B
    [J]. ACTA MATHEMATICA HUNGARICA, 2003, 98 (1-2) : 71 - 77
  • [9] Jackson theorem in Lp, 0 &lt; p &lt; 1, for functions on the sphere
    Dai, F.
    Ditzian, Z.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2010, 162 (02) : 382 - 391
  • [10] Adaptive Lp (0 &lt; p &lt; 1) Regularization: Oracle Property and Applications
    Shi, Yunxiao
    He, Xiangnan
    Wu, Han
    Jin, Zhong-Xiao
    Lu, Wenlian
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 13 - 23