A note on stability and fractal dimension of bivariate α-fractal functions

被引:5
|
作者
Agrawal, V. [1 ]
Som, T. [1 ]
Verma, S. [2 ]
机构
[1] IIT BHU, Dept Math, Varanasi 221005, India
[2] IIIT Allahabad, Dept Appl Sci, Allahabad 211015, India
关键词
Fractal interpolation surfaces; Bivariate alpha-fractal functions; Continuous dependence; Box dimension; Oscillation spaces; INTERPOLATION FUNCTIONS; MINKOWSKI DIMENSION; CONSTRUCTION; PHYSIOLOGY; SURFACES;
D O I
10.1007/s11075-022-01490-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the continuous dependence of the so-called (bivariate) alpha -fractal function on the parameters such as the scaling function alpha net delta of rectangular grid, and the base function S involved in its construction. Furthermore, we establish some results regarding its dimension.
引用
收藏
页码:1811 / 1833
页数:23
相关论文
共 50 条
  • [1] A note on stability and fractal dimension of bivariate α-fractal functions
    V. Agrawal
    T. Som
    S. Verma
    [J]. Numerical Algorithms, 2023, 93 : 1811 - 1833
  • [2] Approximation properties of bivariate α-fractal functions and dimension results
    Jha, Sangita
    Chand, A. K. B.
    Navascues, M. A.
    Sahu, Abhilash
    [J]. APPLICABLE ANALYSIS, 2021, 100 (16) : 3426 - 3444
  • [3] Katugampola Fractional Integral and Fractal Dimension of Bivariate Functions
    S. Verma
    P. Viswanathan
    [J]. Results in Mathematics, 2021, 76
  • [4] Katugampola Fractional Integral and Fractal Dimension of Bivariate Functions
    Verma, S.
    Viswanathan, P.
    [J]. RESULTS IN MATHEMATICS, 2021, 76 (04)
  • [5] Bivariate functions of bounded variation: Fractal dimension and fractional integral
    Verma, S.
    Viswanathan, P.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (02): : 294 - 309
  • [6] APPROXIMATION WITH FRACTAL FUNCTIONS BY FRACTAL DIMENSION
    Liang, Y. S.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [7] A note on fractal sets and the measurement of fractal dimension
    Sandau, K
    [J]. PHYSICA A, 1996, 233 (1-2): : 1 - 18
  • [8] FRACTAL DIMENSION OF MULTIVARIATE α-FRACTAL FUNCTIONS AND APPROXIMATION ASPECTS
    Pandey, Megha
    Agrawal, Vishal
    Som, Tanmoy
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [9] Fractal Dimension of Fractal Functions on the Real Projective Plane
    Hossain, Alamgir
    Akhtar, Md. Nasim
    Navascues, Maria A.
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [10] Fractal Dimension of α-Fractal Functions Without Endpoint Conditions
    Gurubachan
    Chandramouli, V. V. M. S.
    Verma, S.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)